目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于混沌系统敏感文本信息加密算法
课题背景和意义
随着互联网和通信技术的飞速发展,信息安全问题日益凸显。文本信息作为信息传递的主要形式之一,其安全性尤为重要。混沌系统因其高度的敏感性和不可预测性,在密码学领域具有广阔的应用前景。基于混沌系统的敏感文本信息加密算法研究,旨在利用混沌系统的特性,设计一种高效、安全的文本信息加密算法,以保障文本信息在传输和存储过程中的安全性。
实现技术思路
一、算法理论技术
1.1 RSA算法
RSA算法是一种非对称加密算法,其工作原理主要基于数论中的大数质因数分解困难问题。RSA算法的安全性主要依赖于大数质因数分解的困难性。如果攻击者不知道(p)和(q),那么从公开的(n)中分解出(p)和(q)是非常困难的,因此无法轻易计算出私钥(d)。这样,即使攻击者截获了密文,也无法轻易解密得到明文。下面是RSA算法的工作原理简介:
-
密钥生成:
- 选择两个不同的质数(p)和(q),计算它们的乘积(n = p \times q)。
- 计算欧拉函数值(\varphi(n) = (p-1) \times (q-1))。
- 选择一个整数(e),使得(1 < e < \varphi(n)),并且(e)与(\varphi(n))互质(即最大公约数为1)。(e)用作公钥的一部分。
- 计算(d),使得(d \times e \equiv 1 \pmod{\varphi(n)})。(d)用作私钥的一部分。
- 公钥为((e, n)),私钥为((d, n))。
-
加密过程:
- 假设明文为(M),且(M < n)。
- 使用公钥((e, n))进行加密,计算密文(C = M^e \mod n)。
-
解密过程:
- 使用私钥((d, n))进行解密,计算明文(M = C^d \mod n)。
1.2 混沌加密原理
混沌加密原理深深地根植于混沌系统的独特性质中。这些系统对初始条件具有极端的敏感性,意味着即使是最微小的变化也会在系统中产生巨大的影响。这种“蝴蝶效应”式的连锁反应使得混沌系统表现出确定性(因为它们遵循确定的规则)和伪随机性(因为输出结果看起来是随机的,但实际上是由确定性的过程产生的)以及非周期性(不会重复相同的模式)。
在混沌加密中,一个关键步骤是利用特定的混沌映射,如logistic映射,来生成混沌序列。这些序列具有高度的不可预测性和复杂性,使得它们非常适合用作加密算法的密钥或加密过程中的其他要素。通过将混沌序列与明文数据相结合,可以实现数据的加密,从而保护其免受未经授权的访问。
混沌密码学不仅限于使用单一的混沌映射。事实上,研究人员已经探索了各种线性和非线性的混沌映射,以设计更强大、更安全的密码系统。这些系统能够抵抗多种类型的攻击,包括统计分析、暴力破解和侧信道攻击等。
二、实验及结果分析
结合logistic映射与约瑟夫位置置乱的加密算法作为对称加密算法存在安全风险,因为公钥在传输过程中若被攻击者获取,将导致算法被破译。为了改进这一缺陷,采用了分段压缩与加密的方法,并结合了RSA非对称加密算法。在加密过程中,即使公钥被盗,由于RSA算法的特性,没有私钥也无法完全破译。因此,将混沌密码学与非对称加密算法相结合,确保了整个加密算法的安全性。
RSA加密算法之所以具有很高的安全性,关键在于其公钥和私钥的生成机制。即使攻击者获取了公钥n和e,从公钥e推导出私钥d的过程并不唯一,且随着n的增大,推导难度急剧增加,从而保证了算法的安全性。此外,私钥仅在接收方保存,进一步降低了被破解的风险。暴力破解或穷举法获取正确密钥的可能性极低,需要巨大的计算资源和时间成本。logistic映射收敛图是混沌加密中的一个概念,它展示了logistic映射随着时间迭代逐渐收敛到特定值或周期的行为,对于理解混沌系统的特性和设计混沌加密算法具有重要意义。
相关代码示例:
def logistic_map(x, r):
return r * x * (1 - x)
def text_to_ascii(text):
return [ord(c) for c in text]
def ascii_to_text(ascii_list):
return ''.join(chr(i) for i in ascii_list)
def chaos_encrypt(text, initial_value, r, iterations):
x = initial_value
ascii_text = text_to_ascii(text)
encrypted_text = []
for i in range(iterations):
x = logistic_map(x, r)
if i < len(ascii_text):
encrypted_text.append(int(x * 256) ^ ascii_text[i])
else:
break
return encrypted_text
实现效果图样例:
最后
我是海浪学长,创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!