目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于深度学习的指纹识别系统
课题背景和意义
指纹识别作为生物特征识别领域的一项重要技术,在安全认证、犯罪侦查和个人身份验证等方面具有广泛应用前景。随着深度学习技术的迅猛发展,基于深度学习的指纹识别系统成为了当前研究的热点之一。传统的指纹识别方法在复杂背景、低质量图像和变形指纹等情况下存在着一定的局限性,而深度学习技术通过学习大量数据的特征表示,能够有效地提高指纹识别的准确性和鲁棒性。
实现技术思路
一、算法理论基础
1.1 深度学习
人工神经网络(ANN)是模拟生物神经网络的一种计算模型,通过人工神经元的连接和计算来实现信息处理。它由人工神经元作为基本单位构成,每个神经元接收一组输入,经过计算后产生输出。前馈神经网络(FNN)是一种基础简单的人工神经网络结构,通常包括输入层、隐藏层和输出层。在前馈神经网络中,神经元按层次连接,每个神经元接收上一层神经元的输出,并将自身的计算结果传递给下一层。这种结构使得信息在网络中单向传播,没有反馈回路。前馈神经网络具有广泛的应用,能够解决许多机器学习和模式识别的问题。
卷积神经网络(CNN)是一类具有深度结构和卷积计算的前馈神经网络。CNN具有表征学习的能力,能够对输入信息进行平移不变分类。LeNet-5和时间延迟网络是最早出现的CNN模型,而AlexNet、GoogleNet和VGG则是比较著名的CNN模型。近年来,随着深度学习理论的发展和计算设备的提升,CNN在计算机视觉任务分类、目标检测、语义分割等领域得到广泛应用。
卷积神经网络的结构包括数据输入层、卷积计算层、激活函数层、池化层和全连接层。CNN可以通过共享卷积核来处理高维数据,而且无需手动选择特征,只需训练权重即可获得良好的特征分类效果。然而,CNN也存在一些缺点,目前我们对于卷积层提取了哪些特征并不十分清楚,因此卷积层被视为难以解释的"黑箱模型"。此外,CNN需要大量的样本数据才能重新训练一个具有良好性能的模型。
在卷积神经网络中,数据输入层对原始图像数据进行预处理,包括去均值、归一化、主成分分析(PCA)和白化。去均值将输入数据的各个维度中心化为0,使样本的中心位于坐标系原点;归一化将各个维度的数据取值转换到相同范围,减少不同维度数据幅值的影响;PCA用于数据降维处理;白化对数据的特征轴上的幅度进行归一化。
1.2 迁移学习
迁移学习是一种机器学习方法,通过将源领域的知识迁移到目标领域,从而在目标领域中获得良好的效果。当目标领域的数据量较少而源领域的数据量较多时,迁移学习尤为适用。其目标是将在一个领域学习到的知识应用到不同但相关的领域中,使机器能够像人类一样进行类比推理。
在深度学习中,由于需要大量高质量标注数据,很难从头开始训练一个神经网络。如果数据集的规模有限,容易导致过拟合问题。通常情况下,网络的第一层提取的特征与图像数据集关系不大,而最后一层提取的特征与选定的数据集和任务目标密切相关。因此,一般将第一层的特征称为一般特征,将最后一层的特征称为特定特征。
为了应对数据集不足的情况,常用的方法是进行预训练和微调。预训练阶段使用一个大型数据集训练模型,并将该模型作为初始化参数或特征提取器。然后根据当前任务的需求,修改网络的最后一层,并使用当前任务相应的数据集对整个模型的参数进行微调。
1.3 指纹识别
孪生网络是一种特殊的神经网络结构,其接收两张图片作为输入,而不是单张图片。孪生网络的两个子网络结构通常是相同的,并且参数是共享的,就像同卵双胞胎一样。这种网络结构适用于小样本或单样本学习,并且不容易被错误样本干扰,因此在对容错率要求严格的模式识别问题中很有用,比如人脸识别和目标追踪。孪生网络特别适合用于端到端的指纹识别算法。它接收两张指纹图像作为输入,提取特征后通过几层全连接层进行连接,并直接输出这两张指纹图像是否属于同一个手指的结果。
在孪生网络中,选择了ResNet作为子网络结构。一般来说,网络的深度越深,可以获取的信息和特征就越多。然而,深层网络的训练也容易遇到梯度爆炸和梯度消失的问题,导致网络性能下降。为了解决这个问题,ResNet提出了残差和跳跃连接的概念,使得神经网络可以堆叠到上百层。ResNet主要使用两种残差模块:一种是串联两个3×3的卷积神经网络的残差模块,另一种是串联1×1、3×3、1×1的三个卷积神经网络的残差模块。根据层次数量的不同,可以划分为ResNet-18、ResNet-50、ResNet-101等不同结构的ResNet网络,它们都是由上述残差模块的堆叠实现的,以满足不同需求的残差网络结构。
二、 数据集
2.1 数据集
由于网络上没有现有的合适的数据集,我决定自己进行相机拍摄和网络爬取,收集了大量的指纹图像并制作了一个全新的数据集。这个数据集包含了各种指纹图像,包括正常指纹、扭曲指纹、模糊指纹等多种情况。通过网络爬取,我能够获取真实的、多样性的指纹图像,这将为我的研究提供更准确、可靠的数据。
2.2 数据扩充
利用图像处理技术,我对原始数据集中的指纹图像进行了旋转、缩放、平移和加噪声等操作,生成了更多的变形和噪声图像。这样的数据扩充方法可以模拟真实场景中的各种变化和干扰,提高系统对不同条件下指纹的识别能力。结合领域知识和专家经验,针对特定的应用场景,添加了一些特定类型的指纹图像,如湿指纹、低质量指纹等。通过数据扩充,我使得数据集更加全面、丰富,为基于深度学习的指纹识别系统的训练和测试提供了更好的基础。
三、实验及结果分析
3.1 实验环境搭建
实验环境使用Windows操作系统,并利用Python作为主要的编程语言进行算法和模型的实现。使用PyTorch作为深度学习框架,构建和训练神经网络模型。借助Pandas等库,完成数据的加载、处理和转换。这样的实验环境提供了一个方便和高效的平台,用于开发和测试算法系统。
3.2 模型训练
实验使用了TensorFlow框架进行实现,TensorFlow是由Google开发的基于数据流图的开源科学计算库,广泛应用于机器学习、深度学习等人工智能领域。在实验中,采用了Adam优化器进行网络的训练。Adam优化器具有实现简单、计算高效、对内存需求小等优点,特别适用于大规模数据和参数的场景。实验中设置了Adam优化器的超参数,其中β1为0.9,β2为0.99。学习率的调整采用了等间隔调整的策略。初始学习率设置为0.001,在经过5000次训练后,将学习率降低到原学习率的10%。
神经网络参数的初始化在训练过程中非常重要,不良的初始化参数可能导致梯度传播问题,降低训练速度,而良好的初始化参数可以加速网络收敛,更快地找到较优解。当训练的神经网络非常深且参数众多时,如果训练集很小,就容易出现过拟合问题。由于所采用的指纹数据集规模较小,因此容易出现过拟合现象。通过迁移学习的方式利用预训练参数来初始化神经网络,解决了训练集较小导致的过拟合问题,并通过微调网络在指纹数据集上进行训练,以提高指纹识别模型的效果。
相关代码示例:
import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# 加载预训练的ResNet50模型,不包括顶部的全连接层
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
# 冻结预训练模型的参数,只训练顶部的全连接层
for layer in base_model.layers:
layer.trainable = False
# 在预训练模型的顶部添加自定义全连接层
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(512, activation='relu')(x)
predictions = Dense(2, activation='softmax')(x) # 假设输出类别为2分类
# 构建新的模型
model = tf.keras.Model(inputs=base_model.input, outputs=predictions)
# 定义数据生成器
train_datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'path/to/train/directory',
target_size=(224, 224),
batch_size=32,
class_mode='categorical',
subset='training'
)
val_generator = train_datagen.flow_from_directory(
'path/to/train/directory',
target_size=(224, 224),
batch_size=32,
class_mode='categorical',
subset='validation'
)
# 编译模型
model.compile(optimizer=Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
# 进行微调训练
model.fit(
train_generator,
steps_per_epoch=train_generator.samples // train_generator.batch_size,
validation_data=val_generator,
validation_steps=val_generator.samples // val_generator.batch_size,
epochs=10
)
# 保存模型
model.save('fingerprint_model.h5')
海浪学长项目示例:
最后
我是海浪学长,创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!