毕业设计:基于深度学习的用户评价情感分析系统

目录

前言

课题背景和意义

实现技术思路

一、算法理论基础

1.1 情感分析

1.2 LDA模型

二、 数据集

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于深度学习的用户评价情感分析系统

课题背景和意义

       在当前数字化时代,用户评价成为了人们购买决策和产品服务选择的重要参考依据。因此,构建一种准确、高效的用户评价情感分析系统具有重要的意义。该系统基于深度学习技术,可以自动分析用户评价中蕴含的情感倾向,如正面、负面或中性情感,并从中提取出关键信息和洞察,为企业和机构提供决策支持和业务改进的依据。通过深入研究用户评价情感分析系统,可以提高企业对用户需求的理解和满足度,促进产品和服务的优化,提升竞争力和用户体验。

实现技术思路

一、算法理论基础

1.1 情感分析

       情感分析是自然语言处理的一个重要分支领域,主要任务是分析文本中所包含的情感色彩,无论是单词、段落还是整篇文章。过去,人们在购买某个商品时通常会先向亲朋好友询问有关该商品的使用感受,然后再决定是否购买。每个评价都蕴含着消费者对商品的情感倾向,购买者常常会根据这些评价进行理性选择。不同的评价风格会影响购买者个人的购买意愿,因此情感分析变得尤为重要。通过情感分析,可以从大量的文本数据中提取出消费者对商品的情感倾向,进而了解他们的态度、喜好或不满意之处。这对企业和品牌非常关键,可以帮助他们更好地了解消费者需求、改善产品质量、优化营销策略等。情感分析的结果还可以应用于舆情监测、社交媒体分析、产品推荐系统等领域,为决策者提供有价值的信息。

       匹配情感词通过提取评价文本中的情感词,结合其上下文信息,可以判断消费者对产品的积极情感或消极情感。这对电商平台、品牌和消费者都具有重要意义,可以帮助了解产品的优势和不足,改进产品设计和营销策略。匹配情感词的流程通常包括以下步骤:首先,构建情感词库,包括积极情感词和消极情感词,并可能考虑词语的权重或情感强度。然后,将评价文本进行分词处理,将文本拆分成词语的序列。接下来,对每个词语进行情感词匹配,判断其是否在情感词库中,并记录匹配到的情感词和对应的情感极性。最后,根据匹配到的情感词和情感极性,综合考虑上下文信息,对整个评价文本进行情感倾向判断和分析。

       情感方向修正法是一种根据情感词中是否存在否定词来判断情感值的修正方法。在汉语词汇结构中,存在奇数个否定词表示否定意思,即当连续出现奇数次否定词时,表示情感值为否定;而当否定词出现偶数次时,表示情感值为肯定。通过读入否定词表,对情感值的方向进行修正。通过计算每条评论信息的情感得分,将评论内容划分为正面评论和负面评论,并根据此计算情感分析结果的统计准确率。运行代码后,可以得到正面情感评论词云和负面情感评论词云,以直观展示评论中的情感倾向。为了找出产品评论文本之间蕴含的语义关系,分析其产品属性特征的差异优劣,需要系统地对这些评论的文本语义进行进一步综合提炼,挖掘评论文本中包含的主题词。这样做可以帮助进一步理解消费者对产品的评价和需求,为产品改进和市场策略提供有价值的信息。

positive_comments = data[data['sentiment_score'] > 0]['comment']
negative_comments = data[data['sentiment_score'] < 0]['comment']

# 生成正面情感评论词云
positive_wordcloud = WordCloud().generate(' '.join(positive_comments))
plt.figure(figsize=(10, 6))
plt.imshow(positive_wordcloud, interpolation='bilinear')
plt.title('Positive Sentiment Word Cloud')
plt.axis('off')
plt.show()

# 生成负面情感评论词云
negative_wordcloud = WordCloud().generate(' '.join(negative_comments))
plt.figure(figsize=(10, 6))
plt.imshow(negative_wordcloud, interpolation='bilinear')
plt.title('Negative Sentiment Word Cloud')
plt.axis('off')
plt.show()

1.2 LDA模型

       LDA模型是一种常用的主题模型,通过分析文档中的文本主题类型和抽取代表它们的概率特征,实现文本主题的聚类分析或分类。它基于词袋模型,将每篇文档视为一组词的集合,忽略词语之间的顺序关系。建立LDA模型需要构建词典和语料库,并通过迭代推断文档中的主题分布和主题中的词分布,以揭示文本数据中的潜在主题结构。通过运用LDA模型,我们可以从大量文本数据中挖掘主题信息,了解文本集合中隐藏的主题模式和关联词汇。这有助于深入理解文本内容、进行主题聚类、文档分类以及支持信息检索、文本摘要、推荐系统等任务。LDA模型的应用可以为研究者、企业决策者和数据分析人员提供有价值的见解和洞察,帮助他们更好地理解文本数据并做出相应的决策。

毕业设计:基于深度学习的用户评价情感分析系统

       基于相似度的自适应最优LDA模型选择方法可以帮助确定最优的主题数,并进行主题分析,而无需人工调试主题数目。该方法通过相似度计算来评估不同主题数下的主题结构,以找到最优的主题数。实验证明,这种方法可以在相对较少的迭代次数下找到最优的主题结构,避免了人工调试的需求。

       使用LDA主题模型,可以找出不同主题数下相同的主题词集合,并从每个主题模型中随机选择一定数量的主题词(例如前100个),将它们合并成一个集合。然后,生成任意两个主题之间的词频向量,并计算它们的余弦相似度。余弦相似度越大表示两个主题越相似。通过计算主题数的平均余弦相似度,可以寻找最优的主题数。运行代码可以得到主题间的平均余弦相似度图。

       根据平均余弦相似度图,对于正面评论数据,当主题数为1或2时,主题间的平均余弦相似度达到最低点。因此,针对正面评论数据进行LDA分析时,可以选择主题数为1或2。对于负面评论数据,当选择的主题数为3时,主题间的平均余弦相似度达到最低点。因此,针对负面评论数据进行LDA分析时,可以选择主题数为3。

二、 数据集

       由于网络上缺乏合适的用户评价情感数据集,我决定自己进行数据收集并制作了一个全新的数据集。通过使用网络爬虫技术,我收集了大量的用户评价数据,包括不同领域和产品的用户评价文本。这个自制的数据集包含了真实世界中的各种情感倾向和用户观点,具有多样性和可靠性。通过使用这个数据集,我可以为用户评价情感分析系统的训练和评估提供更准确、可靠的数据支持,进一步提高系统的性能和鲁棒性。

三、实验及结果分析

3.1 实验环境搭建

毕业设计:基于深度学习的用户评价情感分析系统

3.2 模型训练

       根据提供的信息,需要获取产品的用户评论数据,并进行数据采集和预处理。需要获取网页源码地址,可以使用Python的JSON库对页面内容进行分析。从该网页中找到最近流行的手机产品,并记录其相关信息。需要提取的评论信息包括用户名、评论内容、购买时间、点赞数、回复数、评分时间和产品型号。将获取的商品数据写入CSV格式的文件中,以便后续的数据处理和分析:

  • 数据预处理是非常重要的,因为原始评论数据中的重复评论和自动评论可能会影响数据分析的准确性,导致结果偏差。因此,需要对数据进行预处理。首先,结合原始评论数据,删除所有自动评论和重复评论。然后,对目标文本内容进行进一步的预处理,包括分段、分句、分词和词性标记,并删除文本中的停用词。数据清洗是对数据进行整理和校验的综合过程,目的是删除重复数据或错误信息,以确保数据的一致性和准确性。
  • 经过对评论文本内容进行处理后,需要对评论进行中文分词,并确定情感分析结果。中文分词相比英文分词更加复杂,因为中文没有像英语那样使用空格来分隔单词。为了解决中文分词的问题,需要处理评论中使用的各种文字标记,然后进行中文分词。在分词之后,还需要去除停用词。停用词是指一些常见的词语,如"啊"、"呃"或"在"等,它们在评论中出现的频率较高,但通常无法体现主题或情感。停用词可能没有实际意义,但它们的出现频率可能很高,因此在进行情感分析时需要将其排除。通过去除停用词,可以提高情感分析的准确性。
  • 经过文本数据预处理后,可以对处理生成的评论数据进行词云分析。根据词云图可以表明消费者的消费认同与否。词云分析有助于快速提炼评论内容,帮助用户在购买前做出决策。

海浪学长项目示例:

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值