毕业设计:基于深度学习的异常行为检测系统 信息安全

目录

前言

课题背景和意义

实现技术思路

一、算法理论基础

1.1 图异常检测

1.2 图神经网络

二、 数据集

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于深度学习的异常行为检测系统

课题背景和意义

       随着计算机技术的迅猛发展,异常行为检测在各个领域中变得越来越重要。异常行为的及时识别和预测对于保障安全、提高效率以及预防潜在风险具有重要意义。然而,传统的异常行为检测方法通常受限于特征提取的困难和复杂环境的挑战。因此,借助深度学习和计算机视觉技术来构建基于图神经网络的异常行为检测系统成为一种创新且有前景的研究方向。

实现技术思路

一、算法理论基础

1.1 图异常检测

       图异常检测方法利用图的结构信息来检测图中的异常。图异常检测任务可以分为异常节点检测、异常边缘检测和异常子图检测,目的是识别图中的异常图对象。在图异常检测中,节点代表真实对象,边代表它们之间的关系。异常节点检测的目标是识别与其他节点存在较大差异的节点,通常表示异常的个体对象,如在线社交网络中的欺诈用户或电子交易网络中的非法交易用户。与异常节点检测不同,异常边缘检测旨在识别异常链路,反映真实对象之间存在的意外或异常关系。

       相比传统的异常检测方法将真实世界对象表示为特征向量并检测向量空间中的离群数据点,利用图形结构进行异常检测的方法考虑了数据对象之间的依赖性。它将数据对象建模成图形结构,并利用相关数据分析和挖掘技术在图中发现与大部分实体不同的节点、边缘或子图。通过考虑对象之间的复杂关系,图异常检测方法可以提供结构信息的支持,更准确地识别异常。

毕业设计:基于深度学习的异常行为检测系统 信息安全

       利用图结构进行异常检测可以更好地捕捉到攻击者与正常用户之间的区别。通过分析图中的关系模式,可以发现攻击者与正常用户之间的差异,进而识别异常行为。图异常检测方法能够利用图中的结构信息,更全面地描述对象之间的关系,并通过挖掘关系模式来检测异常,从而提高异常检测的准确性。布式拒绝服务攻击(DDoS)是一种分布式的攻击,其中不同的主机(节点)向同一个目标主机(节点)发起大量连接(边缘)。类似地,端口扫描是从同一主机向同一目标主机的不同端口进行大量连接,而网络扫描则是从单个源主机向同一网络中的不同主机之间存在多个连接。这些攻击表现出固有的结构模式,使其相对容易被识别。

       与攻击相关的流量特征(如数据包长度、到达间隔时间、端口等)往往可以通过攻击者的伪装来实现,使其具有不易区分的恶意目的。因此,异常检测需要更多地利用图形结构,以一种更稳健的方式识别异常行为,并将数据中复杂的关系体现出来。通过利用图结构进行异常检测,可以更好地捕捉到DDoS攻击、端口扫描和网络扫描等攻击的结构模式。图异常检测方法可以分析节点之间的连接关系、流量分布和其他图属性,从而检测出与正常行为相比具有异常模式的攻击行为。相比仅依赖流量特征的传统异常检测方法,利用图结构的异常检测方法能够更准确地区分正常行为和攻击行为,并提供更稳健的检测能力。

毕业设计:基于深度学习的异常行为检测系统 信息安全

1.2 图神经网络

       图神经网络(GNN)是一种神经网络模型,通过在图形节点之间传递消息来捕捉图形的相关性。它扩展了现有的深度神经网络模型,使其能够处理以图的形式表示的数据。GNN最初受到了卷积神经网络(CNN)的启发,因为CNN在处理规则的二维矩阵数据(如图像)或一维序列数据(如文本)时表现出色。CNN适用于具有规则结构的数据,其中每个节点与其相邻节点之间有固定的连接方式,如图像中的像素点。对于现实世界中的许多数据类型,如社交网络,节点之间的连接方式可能不规则且不同。图神经网络就是受到CNN卷积操作的启发,在这种不规则的图结构上定义了类似的卷积操作。

       在图神经网络中,图的节点被视为网络中的个体,而节点之间的连接关系代表了它们之间的关联性。通过定义图卷积操作,图神经网络可以聚合节点的邻居信息,通过获取邻居节点的特征来更新当前节点的表示。与CNN不同,图神经网络中的节点邻居是无序的且大小可变的,因此图卷积操作需要考虑节点之间的非规则连接关系。通过在图形节点之间传递消息和聚合邻居节点的信息,图神经网络能够捕捉到图形中的相关性和复杂关系。它可以用于图数据的特征提取、节点分类、图分类等任务,为非欧几里得数据提供了一种有效的处理方式。

毕业设计:基于深度学习的异常行为检测系统 信息安全

       图神经网络的目标是学习有效的节点。节点表示是通过组合图结构信息和节点属性来进一步用于节点分类等任务。为了实现这一目标,图神经网络通过在图上定义卷积操作,迭代地聚合节点自身和邻居节点的表示来更新节点表示。图神经网络通常由多个卷积层堆叠而成。在每个卷积层中,初始的节点表示𝐻0 = 𝑋,其中𝑋是节点的初始特征或属性。通过卷积操作,图神经网络从邻居节点中聚合信息,并结合节点自身的表示来更新节点表示。这个过程可以迭代多次,每一次迭代都会进一步改进节点的表示。

       为了构建图神经网络,首先需要从具体的应用中获取图形结构。例如,在交易网络中检测恶意账户,可以将用户账户作为节点,将转账交易作为边构建交易网络图。然后,通过定义卷积操作,构建图神经网络层,以聚合邻居特征并根据任务的要求输出节点表示(嵌入)或边嵌入等。例如,在交易网络中检测恶意账户,可能需要输出节点嵌入来区分不同类型的节点。

毕业设计:基于深度学习的异常行为检测系统 信息安全

       图神经网络层的聚合信息过程是通过定义卷积操作来实现的。在每个图神经网络层中,卷积操作通过迭代地聚合节点自身和邻居节点的信息来更新节点表示。对于每个节点,卷积操作会考虑该节点的邻居节点,并根据它们的特征进行信息聚合。这通常涉及到对邻居节点的特征进行加权平均或池化操作,以捕捉邻居节点对当前节点的影响。这样,节点的表示不仅取决于自身的特征,还考虑了与其相关的邻居节点的信息。通过迭代应用卷积操作,图神经网络层可以逐步传播和聚合信息。每个迭代步骤都会更新节点的表示,使其能够更好地捕捉图中的复杂关系和结构。这种迭代的过程可以根据具体任务和网络设计进行多次,并且随着层数的增加,节点表示可以逐渐融合更多的全局信息。

毕业设计:基于深度学习的异常行为检测系统 信息安全

二、 数据集

       通过自己进行网络爬取和数据集制作,我成功创建了一个全新的数据集,其中包含了综合环境中产生的真实现代正常和异常网络流量数据。该数据集涵盖了九种类型的攻击,包括Dos(拒绝服务攻击)、蠕虫、后门、模糊程序、漏洞利用等。数据集的类标签提供了二分类和多分类标签。二分类标签将流量数据划分为正常和异常两类,而多分类标签则细分为正常流量和各种类型的网络攻击流量。通过网络爬取和数据集制作,我获得了真实且多样化的数据,这使得我的研究能够更好地模拟和分析不同类型的网络流量。  

三、实验及结果分析

3.1 实验环境搭建

毕业设计:基于深度学习的异常行为检测系统 信息安全

3.2 模型训练

异常行为检测系统的设计思路如下:

  •  数据准备:首先,需要收集和准备用于异常行为检测的数据。这可以是具有时间序列或事件序列的数据,例如传感器数据、日志记录或网络流量数据。数据应包括正常行为的示例,以及可能出现的异常行为的示例。
  • 构建图结构:根据具体问题,将数据转化为图形结构是关键一步。例如,可以将数据中的元素作为图的节点,而它们之间的关联性作为边。这可以基于数据之间的相似性、依赖关系或交互行为来定义。
  • 图神经网络模型设计:设计一个适合异常行为检测的图神经网络模型。模型应包括多个图神经网络层,用于迭代地聚合节点表示和邻居信息。可以选择不同类型的图卷积操作,如GCN、GAT或GraphSAGE,以适应特定的图结构和任务需求。
  • 训练模型:使用准备好的数据集对图神经网络模型进行训练。训练过程中,通过最小化损失函数来优化模型参数,使其能够准确地区分正常行为和异常行为。
  • 异常检测与预测:使用训练好的模型对新的数据进行异常行为检测和预测。将新数据输入到训练好的图神经网络模型中,通过节点表示的变化和异常指标进行异常行为的识别和预测。可以设置适当的阈值来确定异常行为的判定标准。
  • 模型优化与迭代:根据实际情况和反馈信息,对模型进行优化和迭代。可能需要调整图神经网络模型的架构、超参数或损失函数,以提高异常行为检测的性能和准确性。 

相关代码示例:

import torch
import torch.nn as nn

class GraphConvolution(nn.Module):
    def __init__(self, in_features, out_features):
        super(GraphConvolution, self).__init__()
        self.linear = nn.Linear(in_features, out_features)

    def forward(self, x, adj):
        x = self.linear(x)
        x = torch.matmul(adj, x)
        return x

class MPGCN(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(MPGCN, self).__init__()
        self.gc1 = GraphConvolution(input_dim, hidden_dim)
        self.gc2 = GraphConvolution(hidden_dim, output_dim)

    def forward(self, x, adj):
        x = self.gc1(x, adj)
        x = torch.relu(x)
        x = self.gc2(x, adj)
        return x

# 定义输入数据和邻接矩阵
input_features = torch.randn(10, 64)  # 输入特征矩阵
adjacency_matrix = torch.randn(10, 10)  # 邻接矩阵

# 初始化并使用MPGCN模型
model = MPGCN(input_dim=64, hidden_dim=128, output_dim=32)
output = model(input_features, adjacency_matrix)

# 打印输出结果
print(output)

海浪学长项目示例:

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值