目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于自然语言处理的新闻文本分类研究
课题背景和意义
随着信息技术的迅速发展,新闻信息的数量急剧增加,如何有效地对海量新闻进行分类和管理成为了一个重要课题。新闻文本分类不仅可以帮助用户快速获取感兴趣的内容,还能为媒体机构提供更有效的信息传播策略。通过利用自然语言处理(NLP)和机器学习技术,可以实现对新闻文本的自动分类,从而提高信息检索的效率和准确性。研究新闻文本分类的课题,不仅具有重要的学术意义,还有助于推动信息技术在新闻行业的应用。
实现技术思路
一、算法理论基础
1.1 文本预处理
数据预处理是对原始文本数据进行清洗及规范化的过程,目标是减少噪声、剔除无效信息、保留有效特征。通过规范化文本数据,为后续的分类任务提供良好的基础。新闻事件文本分类任务主要涉及数据清洗和数据平衡化工作。数据清洗旨在识别、纠正或删除数据集中的不准确、不完整、重复或无效的数据。经过良好的数据清洗后,数据为文本任务提供保障。数据清洗的主要工作包括处理缺失值、异常值、数据去重和数据格式转换。
数据平衡化措施主要包括欠采样和过采样方法。欠采样方法通过减少多数类别的样本数量,达到不同类别间的样本数量平衡。随机欠采样是简单易行的方法,从多数类别中随机选择样本作为子集,丢弃剩余部分。虽然易于实现,但可能丢失重要样本,影响数据集质量。此外,聚类算法也可用于欠采样,选择每个簇的中心点作为新的多数类别样本,保留具有代表性的样本。
过采样方法与欠采样相反,通过增加少数类别的样本数量实现平衡。随机过采样是对少数类别样本的抽取,直接复制以增加数量。但重复样本可能导致信息冗余,进而引发过拟合。一般采用SMOTE或ROSE方法生成合成样本,并结合数据增强技术,通过对现有数据进行变换和扩充,增加数据集多样性。数据增强操作包括同义词替换、随机插入、随机删除和随机交换等。数据类别加权方法不同于欠采样和过采样,通过为每个类别分配权重,应用于训练模型的损失函数中。权重通常是将总样本数除以每个类别的样本数。在训练过程中,模型会更加关注权重较大的类别,从而平衡不同类别间的样本分布。此外,特征权重的调整也可用于平衡数据集,使不同类别的特征在模型学习中具有更平衡的影响。
1.2 文本词嵌入
词嵌入技术将单词映射到固定长度的向量空间中,在向量空间中形成一个点来表示每个单词,点间的距离可以代表两个单词的相似程度。这种方法被称为分布式编码。谷歌团队提出的Word2Vec引入了基于神经网络的词嵌入方法,为文本数据的表示和语义理解提供了突破性进展。Word2Vec是一种轻量级的神经网络,包含输入层、隐藏层和输出层,是一种基于预测的词嵌入模型,具有两种实现策略:词袋模型(CBOW)和跳字模型(Skip-gram)。
CBOW模型的基本思想是选定一个目标词,通过给定的上下文窗口大小选择上下文单词,利用这些上下文单词作为模型输入,预测输出的目标词。输入层的输入是目标词的上下文单词的独热编码,均为1×V维的向量,V表示独热编码的向量长度。这些词嵌入与同一个V×N维的隐藏层矩阵进行点积运算,得到C个隐藏层向量。在这个向量中,每列数字代表了词表中每个单词作为目标词的概率,选择概率最大值对应的单词作为预测词。如果预测词与目标词不一致,则将输出向量与目标词进行误差计算,通过反向传播调整隐藏层与输出层矩阵。经过训练的CBOW模型可以将稀疏的独热编码映射成长度为N的稠密词嵌入表示。
BERT预训练模型,基于大规模语料的自监督学习方法,旨在为单词和文本序列学习优质特征表示,提供可用于迁移学习的模型,通过在特定任务上进行微调,可以应用于各种自然语言处理领域的文本任务。该模型的主要目的是为其他任务提供高质量的特征表示,既是一种深度学习模型,又是一种词嵌入表示技术。BERT的输入嵌入层主要将原始文本序列转换为适用于模型输入的词嵌入形式,为后续编码和预测任务提供基础。输入嵌入层中的词嵌入组成包括词向量、段向量和位置向量。词向量通过训练过程中的反向传播进行更新,段向量用于区分多条输入的句子,位置向量则表示文本序列中每个单词的绝对位置关系。BERT将三种向量表示进行融合以得到输入层的词嵌入输出。
BERT词嵌入技术相较于Word2Vec模型,进一步解决了词嵌入无法处理一词多义的问题,更好地理解每个单词的上下文关系。作为深度学习模型的一部分,BERT规模较大,需要大量计算资源,且对数据样本的质量具有一定依赖性。
1.3 深度学习模型
文本数据经过适当的词嵌入技术转换后,形成包含特征信息的数字表达。为了满足不同文本任务的研究,需选择合适的特征提取方法来获取这些数字中的关键信息。主要针对深度学习模型进行研究,详细介绍三大主流深度学习模型:卷积神经网络、双向长短期记忆网络和BERT模型。
卷积神经网络通常使用在计算机视觉领域,优良的性能使其至今广泛使用与改进。该模型包含输入层、卷积层、池化层和全连接层,核心思想是针对输入层的输入,利用单个或多个卷积核提取数据的局部特征,再由池化层将特征降维处理,减少参数量的同时提取主要特征,最终由全连接层将特征映射到输出类别进行分类任务。在CNN模型中,卷积层是核心,提取图像特征时卷积核一般采用方阵,从左到右、从上到下提取特征。TextCNN通过卷积层的处理能够很好地捕捉数据中的局部特征,这对文本数据来说有效提取局部上下文特征。相较于其他神经网络,TextCNN结构相对简单,卷积过程中的参数共享性质使得模型参数量较少,加快模型训练速度。
双向长短期记忆网络是由前向长短期记忆网络与后向长短期记忆网络组合而成,而LSTM属于一种特殊的循环神经网络。最初RNN被设计用于处理序列数据,但传统RNN训练中存在梯度消失以及梯度爆炸等问题。LSTM引入记忆单元与门控机制,利用记忆单元对特征进行存储,运用遗忘门、输入门和输出门对特征的传递进行选择性更新,使得LSTM在捕捉长距离依赖关系上展现出良好的性能,能够处理序列数据。然而在处理文本任务中,LSTM只能捕捉单向的上文信息,即只能接受当前单词之前的信息,因此引入反向LSTM的BiLSTM能够更加全面和准确地进行特征表示,获取文本的全局上下文信息。相比TextCNN和传统RNN模型,BiLSTM不仅能够获取全局时序特征,还同时提取上下文语义信息。
BERT不仅可以看作是一种词嵌入表示技术,同时也是用于提取数据特征的深度学习模型,普遍适用于语言翻译、问答对话、文本分类等下游任务。BERT是一种基于Transformer编码器的预训练语言模型,不同于Transformer模型,BERT只选择编码器部分,并采用多层堆叠的形式对输入的文本词嵌入进行多次特征提取。输入为文本数据中每个单词的词嵌入,由词向量、段向量和位置向量组成。这些词嵌入输入到Transformer编码器中添加位置编码,经过多头自注意力机制计算词与词之间的注意力权重,并利用其得到完整句子的表达向量,最后经过前馈神经网络完成非线性映射,确保梯度不会消失。
BERT将词嵌入技术与特征提取方法巧妙融合,相较于BiLSTM模型,BERT利用注意力机制实现并行计算全局特征,而BiLSTM需通过前一时刻的输出才能进行下一个时刻的计算。BERT中的多头注意力机制与TextCNN中的多个卷积核思想相似,只不过BERT更关注全局特征,而TextCNN在处理短文本局部特征时更有优势。
二、 数据集
2.1 数据集
从新闻网站、社交媒体、在线新闻数据库渠道收集相关的新闻文本数据。为了确保数据的多样性和覆盖面,建议从多个来源获取数据,并关注不同时间段的新闻事件。收集到的原始数据通常包含大量的噪声和冗余信息,因此需要进行数据清洗和预处理。此过程包括去除无关的HTML标签、广告、重复的新闻条目以及不完整的文本内容。同时,使用自然语言处理技术,进行分词、去除停用词、纠正拼写错误等操作,以便提取出有意义的文本信息。为了提高数据集的质量,还利用人工标注对收集的新闻文本进行人工审核和标注,确保每条新闻文本对应的分类标签准确无误。
2.2 数据划分
对不同类别的文本进行数量统计,并采取适当的数据平衡化措施。如果某些类别的样本数量较少,可能需要进行过采样或数据增强,以确保每个类别在训练模型时都能得到充分的学习。此外,划分训练集、验证集和测试集是制作数据集的重要步骤,通常采用70%的数据用于训练,30%的数据用于验证和测试,以便评估模型的实际性能。
三、实验及结果分析
3.1 实验环境搭建
3.2 模型训练
数据准备需要进行数据清洗、数据增强及随机欠采样,以建立平衡的数据集。这一步骤至关重要,因为不平衡的数据集可能导致模型在某些类别上表现不佳。数据清洗包括去除重复、无效或错误的文本数据,确保数据的准确性和一致性。数据增强则是通过对现有数据进行变换,如同义词替换、随机插入等,增加数据集的多样性。随机欠采样方法则是减少多数类别的样本数量,使得不同类别之间的样本数量更为均衡。通过这些方法,构建出一个平衡且高质量的数据集,为后续模型训练提供良好的基础。
import pandas as pd
from sklearn.utils import resample
# 数据清洗示例
def clean_data(data):
# 去除重复项
data = data.drop_duplicates()
# 去除缺失值
data = data.dropna()
return data
# 随机欠采样示例
def balance_data(data, target_column):
# 按照目标类别进行分组
majority_class = data[data[target_column] == 'majority']
minority_class = data[data[target_column] == 'minority']
# 随机欠采样多数类
majority_class_downsampled = resample(majority_class,
replace=False, # 不进行放回抽样
n_samples=len(minority_class), # 使两者数量相同
random_state=42) # 固定随机种子
balanced_data = pd.concat([majority_class_downsampled, minority_class])
return balanced_data
不同模型在特征提取方面各有优势,卷积神经网络(CNN)擅长捕捉局部特征,而双向长短期记忆网络(BiLSTM)能够有效提取时序特征。通过融合这些不同模型的特征,可以构建一个更为强大的混合模型。BERT模型通过自注意力机制能够有效捕捉文本中的上下文信息,但它可能忽略局部特征和时序特征。因此,可以结合卷积神经网络和双向长短期记忆网络,进一步提取数据特征,形成训练模型。这种组合能够充分发挥各自的优势,从而提高模型的分类性能。
from transformers import BertTokenizer, TFBertModel
import tensorflow as tf
def create_bert_hybrid_model(input_shape):
inputs = Input(shape=input_shape, dtype=tf.int32) # BERT输入格式
bert_model = TFBertModel.from_pretrained('bert-base-uncased')
bert_out = bert_model(inputs)[0] # 获取BERT模型输出
# CNN部分
cnn_out = Conv1D(filters=64, kernel_size=3, activation='relu')(bert_out)
# LSTM部分
lstm_out = LSTM(64)(bert_out)
# 特征融合
merged = concatenate([cnn_out, lstm_out])
outputs = Dense(units=1, activation='sigmoid')(merged)
model = Model(inputs=inputs, outputs=outputs)
return model
将特征矩阵和标签数据分为训练集和测试集,然后对模型进行训练。可以使用交叉验证来评估模型的性能。模型训练完成后,使用测试集对模型进行评估。可以计算准确率、精确率、召回率和F1-score等指标,了解模型的性能。根据评估结果,优化模型性能。可以通过调整模型参数、选择更合适的特征、增加更多的训练数据或使用更复杂的模型来提升分类效果。
海浪学长项目示例:
最后
我是海浪学长,创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!