如果大家最近打算找ai产品经理这方面的工作,可以对照着脑图准备起来啦。
这篇文章给大家讲解两道高频问题:
1)AI产品经理和传统产品经理有什么区别
2)AI 产品经理的工作职责和能力要求是什么?
这两个问题看似简单,实际上是面试官在考察面试者对 AI 产品经理这个岗位的理解程度,以及你到底有没有相关的实战经验,以及在工作中有没有独立的思考。
第一:AI 产品经理和传统产品经理有什么区别?
主要考察候选人除了对通用的产品能力技能之外,是否熟悉 AI产品的特殊技能和要求。
**参考答案:**面试官您好,AI 产品经理作为产品经理,核心职责和底层能力与传统产品经理是一致的,仍然是通过一定的产品方案满足用户的需求从而实现业务目标。
但是它与普通的产品经理,主要存在以下两点不同:
第一:实现产品目标的技术手段不同。传统产品经理对接的是研发工程师,需要通过研发工程师的代码,来完成产品的功能实现,那他们使用的就是研发技术。
而 AI 产品经理对接的是算法工程师和研发工程师,需要对接算法工程师完成具体的模型,再对接研发工程师进行工程开发联调和上线。最终,我们得到的产品形态可能是一个API接口,没有所谓的页面。
基于这种情况,AI 产品经理除了要懂一些基本的研发技术之外,也需要深入学习算法知识,比如工作中常用到哪些算法,以及它们的实现逻辑等等。
第二:AI 产品经理在与技术人员的协作上与传统产品经理有很大****不同。
传统产品经理和研发协作时候,只需要提供 PRD 文档,对需求进行讲解,有问题及时提供解答就可以了。但是 AI 产品经理很难产出一个 ROI(投资回报率)指标明确的 PRD 文档,以及我们和算法同学的沟通也不是一次需求宣讲就能完成的,通常我们需要进行多次的沟通确认,并且在沟通中逐渐清晰对于算法目标范围的设定。
第二:AI 产品经理的工作职责和能力要求是什么?
主要考察候选人对于AI产品经理的工作流程和工作职责有一个全局的了解。如果一个求职者真的从0-1做过一款AI产品,那么这个问题一定不难,所以这个问题也有助于面试官判断求职者是都有简历造假包装简历的嫌疑。
**参考答案:**面试官您好,一个 AI 产品上线的流程大致可以分为,需求定义、方案设计、算法预研、模型构建、模型评估、工程开发、测试上线等几个步骤。这其中,产品经理需要主导的节点有定义产品方向、设计产品方案、跟进产品开发和产品验收评估,AI产品经理的工作职责主要是在这四个步骤得到体现。
1**)**产品经理对产品方向进行定义
作为AI产品经理,首要的职责都是去定义一个 AI 产品。这包括,搞清楚这个行业的方向,这个行业通过 AI 技术可以解决的问题,这个 AI 产品具体的应用场景,需要的成本和它能产生的价值。
这就要求 AI 产品经理除了具备互联网产品经理的基础知识之外,还需要了解 AI 技术的边界,以及通过 AI 技术能够解决的问题是什么。
2)产品经理给出产品的设计方案
完成了产品定义之后,产品经理需要给出产品的设计方案。产品的设计方案会根据产品形态不同而不同,比如硬件和软件结合的 AI 产品,会包括外观结构的设计,机器学习平台的产品需要包括大量的交互设计,模型类的产品(推荐系统、用户画像)更多的是对于模型上线的业务指标的要求。
所以,对于 AI 产品经理来说,此阶段的能力要求为,基本的技术知识是必须要了解的。这些包括基本的统计学概率论知识,主流算法的基本原理和应****用场景,以及这些算法可以帮助我们达成什么样的产品目标。
3. 产品经理跟进产品上线
产品设计完成之后,就到了工程和算法同学分别进行开发的环节了。在这个过程中,作为AI产品需要承担一些项目经理的职责,去跟进项目的上线进度,协调项目资源。
因此,这个阶段**产品经理至少要知道模型的构建过程是怎么样的****。**另外,产品经理还需要知道模型构建过程中,每个节点的产出物,以及它的上下游关系。只有这样,产品经理才可以清楚评估项目进度,遇到需要协调资源的时候,也知道产品在这个阶段需要的是什么。
4)产品评估
产品开发完成之后,产品经理还需要验收产品是否满足业务需求。
在这个阶段,产品经理的能力要求是,需要知道如何去评估一个模型,评估模型的指标都有哪些,具体评估的过程是怎么样的,以及评估结果在什么范围内是合理的。
如何转行/入门AI产品经理?
现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,转行/入门AI产品经理,但是却找不到适合的方法去学习。
作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。
我已将重要的AI大模型资料包括市面上AI产品经理入门手册、AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。