深入浅出数据分析 一

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_37366958/article/details/80473976

学习经验

  • 慢慢读。理解的内容越多,要记忆的内容越少。
    忌死读。停一停,想一想,碰到书中的提问时,别直接翻看答案;想象真的有人在问你这个问题。强迫自己的大脑想的越深,学会、记住的概率就越大。
  • 自己做练习,自己记笔记
    我们安排了练习和笔记,但是要是我们替你完成,就像别人替你锻炼身体一样;只动眼不动手也不可取,要动笔。大量证据表明,学习时的身体动作能够提高学习效率。
  • 阅读“世上没有傻问题”部分
    世上没有傻问题。这些问题并非可看可不看,这是核心内容的组成部分!请勿忽略。
  • 请将下面这段话作为最后一段床头阅读文字。
    有一部分学习过程(尤其是短暂极易转变为长期记忆的过程)发生在放下书本之后,大脑需要有自己的时间进行更多的处理。如果在这段处理时间内学习新东西,那么就会丢失一些刚学会的东西。
  • 开口大声的讨论
    说话会刺激大脑的其他部分。如果你正在努力理解一些知识或者正在努力的增加以后记住这些知识的概率,请大声的说出这些知识。
    还有一种更好的做法,试着向别人大声解释这些知识。你会学的更快,可能还会发现一些阅读时候不曾发现的名堂。
  • 大量的喝水
    充沛的体液会让大脑处于最佳工作状态,脱水(早在感到口渴前就会发生)则会让认知功能下降
  • 聆听大脑的声音
    留意你的大脑是否超负荷工作。若你发现自己开始心不在焉,或者刚刚读过的东西转眼忘记,就该休息。一旦过了某个学习点,哪怕拼命塞,也无法提高学习效率,反而有可能影响学习。
  • 勤加练习
    学会数据分析的唯一办法就是勤加练习,这正是本书的要求。数据分析是一门技术,精于此道的唯一办法就是大量实践。本书将带给你大量的实践机会:每一章中都有一个等待你解决的问题,千万别跳过这些问题不看——大量学习都发生在解决问题的过程中。
    我们为每一个问题都提供了答案,要是卡了壳(有些细微的地方很容易给人带来麻烦),不要不敢看!不过,请尽量先解决问题再看答案,务必让你的办法行之有效,然后再继续看书中的下一部分内容。

数据分析就是仔细推敲证据

  • 数据分析这个词涵盖大量形形色色的工作和大量形形色色的技巧。就算有人明白的告诉你他是数据分析师,你依然无法确定她的专长。
  • 但是,所有优秀的工程师,无论专长或者目标如何,都会在工作过程中按顺序执行下面这个固定基本流程:
  • 确定问题——分解问题和数据——评估——做出决策
  • 在本书的每一章中,你会一次又一次地按顺序执行这些步骤,很快这些步骤就会完全成为你的第二本能。
  • 所有的数据分析师最终会被打造成能做出更好决策的人才,你要学习的是,在浩如烟海的数据汇总洞察先机,做出更好决策

确定问题

  • 未明确自己的问题或者目标就进行数据分析就如同未定下目的地就上路旅行一样。
  • 客户将会帮助你确定问题
    客户将根据你的分析做决策,你需要尽可能的从他那里多了解一些信息才能确定问题。
世上没有傻问题
  • 我总是在数据里兜来兜去。您是说我得现在脑子里有些特定的目标,才能哪怕只是过一眼我的数据?
    == 没必要现在脑子里形成数据再去浏览数据。但是要记住,仅仅过一眼并不是数据分析。数据分析总的来说就是认清问题,以及继而解决问题。
  • 我听说过探索性数据分析,就是从数据中找出一些可能想进一步进行评估的电子。这种数据分析方法中并没有什么“问题确定”步骤
    == 确实有这种分析方法。在探索性数据分析中,问题就是要找到一些值得进行测试的假设条件,这完全是个具体问题。
  • 很好。给我多讲讲对自己的问题不甚了解的客户吧,那种人也需要数据分析师吗?
    == 当然
  • 听起来似乎那种人更加需要专业帮助
    == 的确如此,优秀的数据分析师帮助客户思考自己的问题;他们不会等着客户告诉他们该做什么。要是有人能够向客户指出他们毫无察觉的问题,客户会真心诚意的感谢此人。
动动笔

问题是我们想要提高保湿霜的销量,你想问销售这款保湿霜的CEO提出什么问题呢?

我的问题:
    这款保湿霜竞争对手是哪些?对手的定价怎么样?
    广告费和社交网络费能否加大投入?
数据分析师的问题:
    您希望销量提高多少?
    您觉得我们怎样才能办到呢?
    您觉得销量提高多少是可行的?目标销量合理吗?
    我们的竞争对手销量多少?
    广告和社交网络营销预算是怎么回事?

分解问题

将大问题划分为小问题
  • 你需要将问题划分为可管理可解决的组块。你面对问题时通常含糊不清。
    例如:
    我们如何提高销量?
  • 可以分解为:
    我们最好的客户希望我们给他们什么?
    哪种促销方式最有可能产生效果?
    我们的广告做的怎么样了?
  • 你无法直接回答大问题。但是通过回答从大问题分出来的小问题,你就可以找到大问题的答案。
将数据分解为更小的组块

数据的处理也是如此。人们无意告诉你你所需要的精确答案的量化值,你必须自己提炼重要的因子。
如果你拿到的是原始数据表,你就会想对这些因子进行汇总,让数据更有用。
让我们从数据开始。尝试分解最重要因子的最好起步办法就是找出高效的比较因子。

  • 进行有效的比较是数据分析的核心,整书通篇都在讲述这个工作。‘
阅读更多

没有更多推荐了,返回首页