最长公共子序列LCS(动态规划)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

public class LCS
{
    public static void main(String[] args)
    {
     
        String[] x = {"", "U","B", "S", "B", "T", "H", "C"};
        String[] y = {"", "B", "U", "S", "A", "E", "T", "A", "C"};
        int[][] b = getLength(x, y);
        Display(b, x, x.length-1, y.length-1);
    }
    /*
     * @param x
     * @param y
     * @return 返回一个记录决定搜索的方向的数组
     */
    public static int[][] getLength(String[] x, String[] y)
    {
    //这里没有把第一行第一列置为0
        int[][] b = new int[x.length][y.length];
        int[][] c = new int[x.length][y.length];
        for(int i=1; i<x.length; i++)
        {
            for(int j=1; j<y.length; j++)
            {
                //对应第一个性质
                if( x[i] == y[j])
                {
                    c[i][j] = c[i-1][j-1] + 1;
                    b[i][j] = 1;
                }
                //对应第二或者第三个性质
                else if(c[i-1][j] >= c[i][j-1])
                {
                    c[i][j] = c[i-1][j];
                    b[i][j] = 0;
                }
                //对应第二或者第三个性质
                else
                {
                    c[i][j] = c[i][j-1];
                    b[i][j] = -1;
                }
            }
        }
        return b;
    }
    //回溯的基本实现,采取递归的方式
    public static void Display(int[][] b, String[] x, int i, int j)
    {
        if(i == 0 || j == 0)
            return;
        if(b[i][j] == 1)
        {
            Display(b, x, i-1, j-1);
            System.out.print(x[i]);
        }
        else if(b[i][j] == 0)
        {
            Display(b, x, i-1, j);
        }
        else if(b[i][j] == -1)
        {
            Display(b, x, i, j-1);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值