大白话讲解LCS(最长公共子序列)

本文通过实例解析LCS(最长公共子序列)的概念,指出它与最长公共子串的区别,并提供了求解LCS的方法,包括特殊情况的处理,帮助读者深入理解这一算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天看了七月在线算法课。再一次认识了LCS,现在整理记录:

LCS(Longest Common Subsequence)最长公共子序列。

一个序列S任意删除若干个字符得到新序列T,那么T叫做S的子序列。

两个序列X和Y的公共子序列中,长度最长的那个叫X和Y的最长公共子序列。

例如:

字符串13455和245576的最长公共子序列为455.

字符串acdfg和adfc的最长公共子序列为adf.

注意:这里要区别最长公共子串LCS(Longest Common Substring),这个要求的是字符串必须连续。

这里偷懒,直接拿了老师的PPT。记好下面的记号。

下面就进行LCS解法的探索:

当x=y的时候:

然后我们就能得到:

<think>好的,我需要为用户提供一个关于岭回归的简单易懂的解释或教程。首先,我应该回顾岭回归的基本概念,确保自己理解正确。根据引用[1]和[2],岭回归是对普通线性回归的改进,通过引入L2正则化项来解决多重共线性和过拟合的问题。用户可能不太熟悉这些术语,所以我需要用简单的语言解释。 接下来,我需要比较普通线性回归和岭回归的区别。引用[1]提到普通线性回归使用最小二乘法,而岭回归加入了惩罚系数,导致损失部分无偏性但提高了稳定性。这部分需要解释为什么无偏性被牺牲,以及正则化如何起作用。 然后,数学公式是必要的,但用户要求简单易懂,所以不能太复杂。引用[2]中的目标函数应该用LaTeX格式展示,比如$J(\theta) = \text{MSE} + \alpha \|\theta\|_2^2$,并解释每个部分的含义。同时,引用[1]提到的范数部分,五·范数可能是个笔误,应该是L2范数,需要确认并正确表述。 用户可能想知道岭回归的应用场景和优势。引用[3]提到岭回归提高泛化能力,适用于特征多过样本或存在共线性的情况。这部分需要举例说明,比如在数据维度高时的处理效果。 另外,代码示例可能有帮助。引用[4]中的Python代码片段展示了数据分割,但需要展示如何实际应用岭回归,比如使用sklearn的Ridge类。确保代码简洁,并解释关键参数如alpha的作用。 最后,生成相关问题需要考虑用户可能的后续疑问,比如如何选择alpha值,与Lasso回归的区别,评估模型的方法等。这些问题需要自然衔接,帮助用户深入学习。 在组织内容时,要保持结构清晰,分点讲解,避免技术术语过多,必要时用比喻或类比。同时,确保所有数学公式符合格式要求,行内公式用$...$,独立公式用$$...$$,并正确引用参考资料。检查LaTeX语法是否正确,避免错误。 总结步骤: 1. 定义岭回归及其目的 2. 对比普通线性回归的问题 3. 解释正则化的作用和L2惩罚项 4. 展示目标函数公式 5. 说明参数alpha的作用 6. 提供Python代码示例 7. 应用场景和优势 8. 注意事项 9. 相关问题 需要确保每个部分简洁明了,符合用户对入门教程的需求。</think>### 岭回归简单讲解 #### 一、基本定义 岭回归(Ridge Regression)是**改良版的线性回归**,核心是**通过添加正则化项解决普通线性回归的缺陷**。当数据存在多重共线性(特征高度相关)或特征数多于样本数时,普通线性回归可能失效,而岭回归能稳定求解[^1][^2]。 #### 二、与普通线性回归的对比 1. **普通线性回归** 目标是最小化误差平方和: $$J(\theta) = \sum_{i=1}^m (y_i - \theta^T x_i)^2$$ 但若特征矩阵$X^TX$不可逆(如特征共线性或样本不足),无法求解析解[^1]。 2. **岭回归改进** 添加L2正则化项(惩罚系数$\alpha$控制强度): $$J(\theta) = \sum_{i=1}^m (y_i - \theta^T x_i)^2 + \alpha \sum_{j=1}^n \theta_j^2$$ 这一改动使$X^TX + \alpha I$始终可逆,确保解唯一[^2]。 #### 三、核心作用 - **解决多重共线性**:正则化压缩系数,减少相关性干扰 - **防止过拟合**:惩罚大系数,限制模型复杂度 - **处理高维数据**:特征数多于样本数时仍可用[^3] #### 四、参数说明 - **$\alpha$(正则化强度)** - $\alpha=0$时退化为普通线性回归 - $\alpha$越大,系数压缩越明显(但可能欠拟合) #### 五、Python代码示例 ```python from sklearn.linear_model import Ridge from sklearn.model_selection import train_test_split # 分割数据(引用示例代码[^4]) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 训练模型(alpha=1.0为默认值) ridge = Ridge(alpha=1.0) ridge.fit(X_train, y_train) # 预测与评估 score = ridge.score(X_test, y_test) ``` #### 六、应用场景 1. 医疗数据分析(基因表达等高维数据) 2. 金融风控(消除共线性特征影响) 3. 图像处理(像素特征相关性高) #### 七、注意事项 - 需标准化数据(正则化对尺度敏感) - 通过交叉验证选择最佳$\alpha$值 - 若需要特征选择,可结合Lasso回归(L1正则化) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值