题目描述
星农(StarFarming)公司计划要给员工发路费津贴,发放的规则是这样的:1到n-1代表各个员工家的序号,n代表公司。路费津贴只发给上班的最短路与回家的最短路的总路程最长的人。该市的路建造的有些奇怪,修路只修单行道,即只允许往某一个方向通行。
现在给你城市的有向图的地图,TLG请你帮忙计算谁能得到津贴,以及他上班和回家的总路程是多少。
输入
有多组测试数据。
每组第一行输入两个整数N,M。表示点的个数,与单行道的数量(可能有重复)
接下来m行,每行输入三个整数x,y,z。表示从x到y城市有一条单行道,距离为z。
题目保证至少一人存在来回的路径。不存在的不发津贴(班都没法好好上还想要钱?!)
1≤N≤10001≤N≤1000
1≤M≤1000001≤M≤100000
1≤x,y≤N1≤x,y≤N
1≤z≤2001≤z≤200
输出
对于每组数据,输出两个整数,分别表示获得津贴的人的序号以及总路程。(如果有多个人路程相同,取序号最小的)
样例输入
4 7
1 2 2
2 3 2
1 3 4
4 1 2
4 2 2
3 4 1
4 3 5
样例输出
1 7
提示
对于样例,
1来回需要的最短路程是7:1->2->3->4->1
2来回需要的最短路程是5:2->3->4->2
3来回需要的最短路程是5:3->4->2->3
所以输出1 7
正反两边最短路就行
#include<cstring>
#include<cstdio>
#include<queue>
#include<vector>
using namespace std;
typedef long long LL ;
const int MAXN =1e3+10;
const int MAXM = 100000+10;
const LL inf =0x3f3f3f3f;
const int mod=1e9+7;
struct edge{LL to,cost;};
vector<edge>G[MAXN],GG[MAXN];
LL dis[MAXN];
LL diss[MAXN];
int n,m;
void init(){
for(int i=1;i<=n;i++)
G[i].clear();GG[i].clear();
dis[i]=inf;diss[i]=inf;
}
void getmap()
{
int i,j;
for(i=0;i<m;i++)
{
LL temp;edge e;LL a;
scanf("%lld%lld%lld",&a,&e.to,&e.cost);
G[a].push_back(e);
temp=a;
a=e.to;e.to=temp;
GG[a].push_back(e);
}
}
void spfa(int st,LL *d,vector<edge> *G)
{
d[st]=0;
queue<int>Q;
Q.push(st);
while(!Q.empty())
{
int next=Q.front();Q.pop();
for(int i=0;i<G[next].size();i++)
{
edge e=G[next][i];
if(d[e.to]>d[next]+e.cost)
{
d[e.to]=d[next]+e.cost;
Q.push(e.to);
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m)){
init();
getmap();
spfa(n,dis,G);
spfa(n,diss,GG);
int i,j;
LL id=inf,maxval=-1;
for(LL i=1;i<=n-1;i++){
if(dis[i]==inf||diss[i]==inf) continue;
LL sum=dis[i]+diss[i];
if(sum>maxval) {
maxval=sum;
id=i;
}else if(sum==maxval){
id=min(id,i);
}
}
printf("%lld %lld\n",id,maxval);
}
return 0;
}