【POJ - 1061 】青蛙的约会 【exgcd 求解不定方程】

本文介绍了一个有趣的数学问题:两只在线上相向而跳的青蛙如何才能相遇。通过使用扩展欧几里得算法解决不定方程,找出青蛙们相遇所需的跳跃次数。

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行”Impossible”
Sample Input
1 2 3 4 5
Sample Output
4
裸的扩展欧几里得求 不定方程。

扩展欧几里得可以求 :
形如 a * x + b * y = d= gcd ( a, b ) 这样的方程 并且求出x和y,且|x|+|y|最小,且解x和y在[ 0 , b / d - 1 ] 中有唯一解 。
形如 a * x + b*y = c 的方程为不定方程,只有当gcd( a , b ) | c 时此方程才有 解。
定理 :只要 a * x + b * y = c 有解,x 和 y 一定在[0 , b / gcd( a, b ) -1] 上有唯一解 。

假如我们想要求 a * x + b * y = c 的方程,首先我们用exgcd(a,b,x,y) 但是这样其实求的不是 原方程的解,它是求a * X + b * Y = d (d=gcd(a,b))的解。
对比一下
a * x + b * y = c
a * X + b * Y = d
这时候就知道为什么 d | c 才可有解。
a * x + b * y = ( c / d ) ( a * X + b * Y ) = c
此时很明显 x = X * ( c / d ) , 最小正解x = ( x % ( b / d ) + b / d ) % ( b / d )

代码

#include<cstdio>

#define LL long long 
const int MAXN = 1e5;
const int MAXM = 1e6;
const int mod = 1e9+7;
const int inf = 0x3f3f3f3f;

void exgcd(LL a, LL b, LL &d, LL &x, LL &y){  
    if(!b){  
        d = a;  
        x = 1;  
        y = 0;  
    }  
    else {  
        exgcd(b, a%b, d, y, x);  
        y -= x * (a / b);  
    }  
}  
int main(){

    LL x,y,n,m,L;
    while(scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&L)!=EOF){
        LL d,X,Y;
        exgcd(L,n-m,d,X,Y);
        if((x-y)%d){
            puts("Impossible");
            continue;
        }
        LL temp=(x-y)/d;
        LL t=Y*temp;
        L/=d;
        printf("%lld\n",(t%L+L)%L);
    }
    return 0;
}
MATLAB主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性内容概要:本文主要介绍了一种在MATLAB环境下实现的主动噪声和振动控制算法,该算法针对较大的次级路径变化具有较强的鲁棒性。文中详细阐述了算法的设计原理与实现方法,重点解决了传统控制系统中因次级路径动态变化导致性能下降的问题。通过引入自适应机制和鲁棒控制策略,提升了系统在复杂环境下的稳定性和控制精度,适用于需要高精度噪声与振动抑制的实际工程场景。此外,文档还列举了多个MATLAB仿真实例及相关科研技术服务内容,涵盖信号处理、智能优化、机器学习等多个交叉领域。; 适合人群:具备一定MATLAB编程基础和控制系统理论知识的科研人员及工程技术人员,尤其适合从事噪声与振动控制、信号处理、自动化等相关领域的研究生和工程师。; 使用场景及目标:①应用于汽车、航空航天、精密仪器等对噪声和振动敏感的工业领域;②用于提升现有主动控制系统对参数变化的适应能力;③为相关科研项目提供算法验证与仿真平台支持; 阅读建议:建议读者结合提供的MATLAB代码进行仿真实验,深入理解算法在不同次级路径条件下的响应特性,并可通过调整控制参数进一步探究其鲁棒性边界。同时可参考文档中列出的相关技术案例拓展应用场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值