【L2-007.】 家庭房产 【离散化+DFS】

给定每个人的家庭成员和其自己名下的房产,请你统计出每个家庭的人口数、人均房产面积及房产套数。

输入格式:

输入第一行给出一个正整数N(<=1000),随后N行,每行按下列格式给出一个人的房产:

编号 父 母 k 孩子1 … 孩子k 房产套数 总面积

其中 编号 是每个人独有的一个4位数的编号;父 和 母 分别是该编号对应的这个人的父母的编号(如果已经过世,则显示-1);k(0<=k<=5)是该人的子女的个数;孩子i是其子女的编号。

输出格式:

首先在第一行输出家庭个数(所有有亲属关系的人都属于同一个家庭)。随后按下列格式输出每个家庭的信息:

家庭成员的最小编号 家庭人口数 人均房产套数 人均房产面积

其中人均值要求保留小数点后3位。家庭信息首先按人均面积降序输出,若有并列,则按成员编号的升序输出。

输入样例:
10
6666 5551 5552 1 7777 1 100
1234 5678 9012 1 0002 2 300
8888 -1 -1 0 1 1000
2468 0001 0004 1 2222 1 500
7777 6666 -1 0 2 300
3721 -1 -1 1 2333 2 150
9012 -1 -1 3 1236 1235 1234 1 100
1235 5678 9012 0 1 50
2222 1236 2468 2 6661 6662 1 300
2333 -1 3721 3 6661 6662 6663 1 100
输出样例:
3
8888 1 1.000 1000.000
0001 15 0.600 100.000
5551 4 0.750 100.000

分析:简单是简单,但是好繁琐啊,强行增加代码量的赶脚 。将所有 有关系的双方建立双向边,这样的话,只要是同一个家庭那么一定会在一个联通快中。
为了方便遍历 所有点,我加一下离散化。

代码

#include<bits/stdc++.h>
using namespace std;
#define LL long long

const int N  = 1e5+11;
const int M  = 1e6+11;
const int mod = 1e9+7;
const int inf = 0x3f3f3f3f;
const LL inff = 0x3f3f3f3f3f3f3f3f;

vector<int>ve[N];
map<int,int>Hash;int sz=1; // 离散化一下

int rid[N],house[N],big[N];
int getid(int x){
    if(!Hash[x]) {
        Hash[x]=sz;
        rid[sz]=x; sz++;
    }
    return Hash[x];
}

int vis[N];
int lowid,num,sumh,sumb;
void dfs(int now,int pre){
    vis[now]=1; num++; lowid=min(lowid,rid[now]);
    sumh+=house[now]; sumb+=big[now];
    for(int i=0;i<ve[now].size();i++){
        int v=ve[now][i];
        if(!vis[v])
            dfs(v,now);
    }
}

struct Node{
    int id,num;
    double house,big;
    Node(){}
     Node (int _id,int _num,double _house,double _big ){
        id=_id; num=_num;
        house=_house; big=_big;
    }
    bool operator < (const Node &b) const{
        if(big!=b.big) return big>b.big;
        else return id<b.id;
    }
}node[N]; int xu=0;

int main(){
    int n;scanf("%d",&n);
    for(int i=1;i<=n;i++){
        int x;scanf("%d",&x);
        x=getid(x);
        int a,b;scanf("%d%d",&a,&b);
        if(a!=-1){
            a=getid(a);
            ve[a].push_back(x);  // 必须要是建立双向边,不然无法遍历到整个联通快
            ve[x].push_back(a);
        }
        if(b!=-1){
            b=getid(b);
            ve[b].push_back(x);
            ve[x].push_back(b);
        }
        int k;scanf("%d",&k);
        while(k--){
            int z;scanf("%d",&z);
            z=getid(z);
            ve[x].push_back(z);
            ve[z].push_back(x);
        }

        int q,w;scanf("%d%d",&q,&w);
        house[x]=q; big[x]=w;
    }

    for(int i=1;i<sz;i++){
        if(!vis[i]){
            lowid=inf; num=sumh=sumb=0;
            dfs(i,-1);
            node[xu++]=Node( lowid,num,sumh*1.0/num,sumb*1.0/num);
        }
    }

    sort(node,node+xu);
    printf("%d\n",xu);
    for(int i=0;i<xu;i++){
        printf("%04d %d %.3lf %.3lf\n",node[i].id,node[i].num,node[i].house,node[i].big);
    }
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值