链接:https://www.nowcoder.com/acm/contest/105/D
来源:牛客网
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 32768K,其他语言65536K
64bit IO Format: %lld
题目描述
Fibonacci数是非常有名的一个数列,它的公式为 f(n)=f(n-1)+f(n-2),f(0)=1,f(1)=2。
我们可以把任意一个数x表示成若干不相同的Fibonacci数的和, 比如说14 = 13+1 = 8+5+1 = 8+3+2+1。
如果把Fibonacci数列作为数的位权,即f(i)作为第i位的位权,每位的系数只能是0或者1,从而得到一个01串。 比如14可以表示成 100001,11001,10111。 我们再把这个01串看成2进制,再转成10进制以后就变成了 33,25,23。 为了避免歧义,我们将使用最小的那个值23。
请按照这个过程计算一下10进制整数通过上述转换过程得到的10进制整数。
输入描述:
第一行是一个整数T(1 ≤ T ≤ 10000),表示样例的个数。
以后每行一个样例,为一个十进制正整数x(1 ≤ x ≤ 109)。
输出描述:
每行输出一个样例的结果。
示例1
输入
5
1
10
100
1000
1000000000
输出
1
14
367
10966
4083305275263
记录一下:
代码
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair <int, int> pii;
const int N = (int) 100 + 11;
const int M = (int) 1e6 + 11;
const int mod = (int) 1e9 + 7;
const int INF = 0x3f3f3f3f;
ll fib[N + 1], sum[N + 1], sz = 50;
void init(){
sum[0] = 0;
fib[1] = 1; sum[1] = fib[1];
fib[2] = 2; sum[2] = sum[1] + fib[2];
for(int i = 3; i<= sz; i++){
fib[i] = fib[i - 1] + fib[i - 2];
sum[i] = sum[i - 1] + fib[i];
//printf("%lld\n", fib[i]);
}
}
ll solve(ll n){
ll ans = 0;
for(int i = sz; i; i--){
if(sum[i - 1] < n) { // 想要选择当前位置, 那么一定是必须要选择这个值才可以组成, 也就是sum[i - 1] < n
ans += (1ll << (i - 1));
n -= fib[i];
}
}
//printf("%lld\n", ans);
return ans;
}
int main(){
init();
int T;scanf("%d", &T);
while(T--){
ll n; scanf("%lld", &n);
printf("%lld\n", solve(n));
}
return 0;
}