(1)二叉树中每个结点的两棵子树的高度差等于 1()
A、正确
B、错误
答案:B
解析:平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树(有别于AVL算法)。
且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等。
最小二叉平衡树的节点总数的公式如下 F(n)=F(n-1)+F(n-2)+1 这个类似于一个递归的数列,
可以参考Fibonacci(斐波那契)数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量。
(2)已知一棵二叉树的前序遍历结果为abcdef,中序遍历结果为cbaedf,则后序遍历的结果为
A、cbefda
B、fedcba
C、cbedfa
D、不定
答案:A
解析:根据前序和中序可判断,a为根节点,然后根据中序中a的位置,可判断cb和edf分别为左子树部分和右子树部分,
1.左子树,两次遍历结果不一样,所以cb存在父子关系,c为子
2.右子树,ef遍历顺序不变所以ef为兄弟,d在变,且前序在前,中序在中,所以d为父亲
a
/ \
b d
/ /