机器学习:分类模型的应用案例及核心API

人工分类

特征1特征2输出
310
251
181
640
520
351
471
4-10
681
510

案例:

import numpy as np
import matplotlib.pyplot as mp
x = np.array([
    [3, 1],
    [2, 5],
    [1, 8],
    [6, 4],
    [5, 2],
    [3, 5],
    [4, 7],
    [4, -1]])
y = np.array([0, 1, 1, 0, 0, 1, 1, 0])
l, r = x[:, 0].min() - 1, x[:, 0].max() + 1
b, t = x[:, 1].min() - 1, x[:, 1].max() + 1
n = 500
grid_x, grid_y = np.meshgrid(np.linspace(l, r, n), np.linspace(b, t, n))
grid_z = np.piecewise(grid_x, [grid_x>grid_y, grid_x<grid_y], [1, 0])

mp.figure('Simple Classification', facecolor='lightgray')
mp.title('Simple Classification', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.pcolormesh(grid_x, grid_y, grid_z, cmap='gray')
mp.scatter(x[:, 0], x[:, 1], c=y, cmap='brg', s=80)
mp.show()

逻辑分类

通过输入的样本数据,基于多元线型回归模型求出线性预测方程。

y = w0+w1x1+w2x2

但通过线型回归方程返回的是连续值,不可以直接用于分类业务模型,所以急需一种方式使得把连续的预测值->离散的预测值。 [-oo, +oo]->{0, 1}
逻 辑 函 数 ( s i g m o i d ) : y = 1 1 + e − x 逻辑函数 (sigmoid):y = \frac{1}{1+e^{-x}} (sigmoid)y=1+ex1
该逻辑函数当x>0,y>0.5;当x<0, y<0.5; 可以把样本数据经过线性预测模型求得的值带入逻辑函数的x,即将预测函数的输出看做输入被划分为1类的概率,择概率大的类别作为预测结果,可以根据函数值确定两个分类。这是线性函数非线性化的一种方式。

逻辑回归相关API:

import sklearn.linear_model as lm
# 构建逻辑回归器 
# solver:逻辑函数中指数的函数关系(liblinear为线型函数关系)
# C:参数代表正则强度,为了防止过拟合。正则越大拟合效果越小。
model = lm.LogisticRegression(solver='liblinear', C=正则强度)
model.fit(训练输入集,训练输出集)
result = model.predict(带预测输入集)

案例:基于逻辑回归器绘制网格化坐标颜色矩阵。

import numpy as np
import sklearn.linear_model as lm
import matplotlib.pyplot as mp
x = np.array([
    [3, 1],
    [2, 5],
    [1, 8],
    [6, 4],
    [5, 2],
    [3, 5],
    [4, 7],
    [4, -1]])
y = np.array([0, 1, 1, 0, 0, 1, 1, 0])`
# 逻辑分类器
model = lm.LogisticRegression(solver='liblinear', C=1)
model.fit(x, y)
l, r = x[:, 0].min() - 1, x[:, 0].max() + 1
b, t = x[:, 1].min() - 1, x[:, 1].max() + 1
n = 500
grid_x, grid_y = np.meshgrid(np.linspace(l, r, n), np.linspace(b, t, n))
samples = np.column_stack((grid_x.ravel(), grid_y.ravel()))

grid_z = model.predict(samples)
grid_z = grid_z.reshape(grid_x.shape)
mp.figure('Logistic Classification', facecolor='lightgray')
mp.title('Logistic Classification', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.pcolormesh(grid_x, grid_y, grid_z, cmap='gray')
mp.scatter(x[:, 0], x[:, 1], c=y, cmap='brg', s=80)
mp.show()

多元分类

通过多个二元分类器解决多元分类问题。

特征1特征2==>所属类别
47==>A
3.58==>A
1.21.9==>B
5.42.2==>C

若拿到一组新的样本,可以基于二元逻辑分类训练出一个模型判断属于A类别的概率。再使用同样的方法训练出两个模型分别判断属于B、C类型的概率,最终选择概率最高的类别作为新样本的分类结果。

案例:基于逻辑分类模型的多元分类。

import numpy as np
import sklearn.linear_model as lm
import matplotlib.pyplot as mp
x = np.array([
    [4, 7],
    [3.5, 8],
    [3.1, 6.2],
    [0.5, 1],
    [1, 2],
    [1.2, 1.9],
    [6, 2],
    [5.7, 1.5],
    [5.4, 2.2]])
y = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])
# 逻辑分类器
model = lm.LogisticRegression(solver='liblinear', C=1000)
model.fit(x, y)
l, r = x[:, 0].min() - 1, x[:, 0].max() + 1
b, t = x[:, 1].min() - 1, x[:, 1].max() + 1
n = 500
grid_x, grid_y = np.meshgrid(np.linspace(l, r, n), np.linspace(b, t, n))
samples = np.column_stack((grid_x.ravel(), grid_y.ravel()))
grid_z = model.predict(samples)
print(grid_z)
grid_z = grid_z.reshape(grid_x.shape)

mp.figure('Logistic Classification', facecolor='lightgray')
mp.title('Logistic Classification', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.pcolormesh(grid_x, grid_y, grid_z, cmap='gray')
mp.scatter(x[:, 0], x[:, 1], c=y, cmap='brg', s=80)
mp.show()

朴素贝叶斯分类

朴素贝叶斯分类是一种依据统计概率理论而实现的一种分类方式。观察这组数据:

天气情况穿衣风格约女朋友==>心情
0(晴天)0(休闲)0(约了)==>0(高兴)
01(风骚)1(没约)==>0
1(多云)10==>0
02(破旧)1==>1(郁闷)
2(下雨)20==>0
==>
010==>

通过上述训练样本如何预测:晴天、穿着休闲、没有约女朋友时的心情?可以整理相同特征值的样本,计算属于某类别的概率即可。但是如果在样本空间没有完全匹配的数据该如何预测?

贝叶斯定理:P(A|B)=P(B|A)P(A)/P(B) <== P(A, B) = P(A) P(B|A) = P(B) P(A|B)

例如:

假设一个学校里有60%男生和4 0%女生.女生穿裤子的人数和穿裙子的人数相等,所有男生穿裤子.一个人在远处随机看到了一个穿裤子的学生.那么这个学生是女生的概率是多少?

P(女) = 0.4
P(裤子|女) = 0.5
P(裤子) = 0.6 + 0.2 = 0.8
P(女|裤子) = P(裤子|女) * P(女) / P(裤子) = 0.5 * 0.4 / 0.8 = 0.25

根据贝叶斯定理,如何预测:晴天、穿着休闲、没有约女朋友时的心情?

P(晴天,休闲,没约,高兴) 
= P(晴天|休闲,没约,高兴) P(休闲,没约,高兴) 
= P(晴天|休闲,没约,高兴) P(休闲|没约,高兴) P(没约,高兴)
= P(晴天|休闲,没约,高兴) P(休闲|没约,高兴) P(没约|高兴)P(高兴)
( 朴素:条件独立,特征值之间没有因果关系)
= P(晴天|高兴) P(休闲|高兴) P(没约|高兴)P(高兴)

由此可得,统计总样本空间中晴天、穿着休闲、没有约女朋友时高兴的概率,与晴天、穿着休闲、没有约女朋友时不高兴的概率,择其大者为最终结果。

高斯贝叶斯分类器相关API:

import sklearn.naive_bayes as nb
# 创建高斯分布朴素贝叶斯分类器
model = nb.GaussianNB()
model.fit(x, y)
result = model.predict(samples)

案例:

import numpy as np
import sklearn.naive_bayes as nb
import matplotlib.pyplot as mp

data = np.loadtxt('../data/multiple1.txt', unpack=False, dtype='U20', delimiter=',')
print(data.shape)
x = np.array(data[:, :-1], dtype=float)
y = np.array(data[:, -1], dtype=float)

# 创建高斯分布朴素贝叶斯分类器
model = nb.GaussianNB()
model.fit(x, y)
l, r = x[:, 0].min() - 1, x[:, 0].max() + 1
b, t = x[:, 1].min() - 1, x[:, 1].max() + 1
n = 500
grid_x, grid_y = np.meshgrid(np.linspace(l, r, n), np.linspace(b, t, n))
samples = np.column_stack((grid_x.ravel(), grid_y.ravel()))
grid_z = model.predict(samples)
grid_z = grid_z.reshape(grid_x.shape)

mp.figure('Naive Bayes Classification', facecolor='lightgray')
mp.title('Naive Bayes Classification', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.pcolormesh(grid_x, grid_y, grid_z, cmap='gray')
mp.scatter(x[:, 0], x[:, 1], c=y, cmap='brg', s=80)
mp.show()
数据集划分

对于分类问题训练集和测试集的划分不应该用整个样本空间的特定百分比作为训练数据,而应该在其每一个类别的样本中抽取特定百分比作为训练数据。sklearn模块提供了数据集划分相关方法,可以方便的划分训练集与测试集数据,使用不同数据集训练或测试模型,达到提高分类可信度。

数据集划分相关API:

import sklearn.model_selection as ms

ms.train_test_split(输入集, 输出集, test_size=测试集占比, random_state=随机种子)
    ->训练输入, 测试输入, 训练输出, 测试输出

案例:

import numpy as np
import sklearn.model_selection as ms
import sklearn.naive_bayes as nb
import matplotlib.pyplot as mp
data = np.loadtxt('../data/multiple1.txt', unpack=False, dtype='U20', delimiter=',')
print(data.shape)
x = np.array(data[:, :-1], dtype=float)
y = np.array(data[:, -1], dtype=float)
# 划分训练集和测试集
train_x, test_x, train_y, test_y = \
    ms.train_test_split( x, y, test_size=0.25, random_state=7)
# 朴素贝叶斯分类器
model = nb.GaussianNB()
# 用训练集训练模型
model.fit(train_x, train_y)

l, r = x[:, 0].min() - 1, x[:, 0].max() + 1
b, t = x[:, 1].min() - 1, x[:, 1].max() + 1
n = 500
grid_x, grid_y = np.meshgrid(np.linspace(l, r, n), np.linspace(b, t, n))
samples = np.column_stack((grid_x.ravel(), grid_y.ravel()))
grid_z = model.predict(samples)
grid_z = grid_z.reshape(grid_x.shape)

pred_test_y = model.predict(test_x)
# 计算并打印预测输出的精确度
print((test_y == pred_test_y).sum() / pred_test_y.size)

mp.figure('Naive Bayes Classification', facecolor='lightgray')
mp.title('Naive Bayes Classification', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.pcolormesh(grid_x, grid_y, grid_z, cmap='gray')
mp.scatter(test_x[:,0], test_x[:,1], c=test_y, cmap='brg', s=80)
mp.show()
  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值