机制设计原理与应用(三)Screening

文章讨论了在卖方试图最大化预期收入的情况下,如何为单个不可分割项目和无限可分项目定价。重点介绍了激励相容性和个人理性的概念,并阐述了如何设计直接机制以确保买方如实报告其价值。对于不可分项目,提出了直接机制的特性,如激励相容性条件和卖方收入最大化的策略。对于可分项目,同样探讨了激励相容和个人理性的条件,以及卖方如何在满足这些条件下最大化收入。
摘要由CSDN通过智能技术生成

3 Screening

Screening theory:机制设计理论可以被看作是其多智能体的拓展。

概率论:是初始分析,广泛用于促进理论分析。

3.1 为单个不可分割的项目定价

模型

卖方寻求出售一件不可分割的物品。

卖方的目标是使预期收入最大化。

为什么收入最大化此福利最大化更复杂?

卖方被假设为风险中立。

​ 风险中立,风险规避,风险追求?(举例)。

只有一个买家对该物品的价值为 θ \theta θ
u = { θ − t , 买方购买这个物品支付 t 0 , 否则 u = \begin{cases} \theta - t, & 买方购买这个物品支付t \\ 0, & 否则 \end{cases} u={θt,0,买方购买这个物品支付t否则
θ \theta θ对买方来说是私有的并且取决于买方的类型。

3.1.1 对 θ \theta θ的假设

θ \theta θ代表的是买方对物品的估价,卖方虽然不能直接获得,但是可以从以往的数据中找到大多数人对这个物品的购买价格(不包括非理性个体)。

  • 假设卖方对 θ \theta θ的可能值有一个概率分布。
  • 这种分布可以用CDF F和PDF f描述。
  • F在一个区间 [ θ ‾ , θ ‾ ] [\underline{\theta}, \overline{\theta}] [θ,θ]内,其中 0 < θ ‾ < θ ‾ 0<\underline{\theta}<\overline{\theta} 0<θ<θ;并且$f(\theta)>0,\forall \theta \in [\underline{\theta}, \overline{\theta}] $
  • 在卖方看来, θ \theta θ是一个具有CDF F的随机变量(但实际上它只由买方观察)
3.1.2 问题描述

卖方:找到一个出售物品的程序,使其预期收入最大化(即设计一个博弈和策略,又称机制的规则)。

买方:遵循设计好的机制,在知道 θ \theta θ值的情况下,选择自己的策略,使其预期效用最大化。

第一种猜测:卖方应该选择一种博弈,根据这种博弈,买方只有一种选择,即买方没有得到物品,但必须支付t,其中t可以是一些任意大的数字。(为什么要排除这种机制?)答案是个人理性!

第二种猜测:卖方应该使用"讨价还价"、“抽签”…(复杂)我们能否将注意力限制在一小部分机制上

定义

一个"直接机制"由函数q和t组成,其中
q : [ θ ‾ , θ ‾ ] ⟶ [ 0 , 1 ] ( 可能性 ) t : [ θ ‾ , θ ‾ ] ⟶ R ( 真实值 ) q:[\underline{\theta}, \overline{\theta}] \longrightarrow [0,1](可能性) \\ t:[\underline{\theta}, \overline{\theta}] \longrightarrow \mathbb{R}(真实值) q:[θ,θ][0,1](可能性)t:[θ,θ]R(真实值)

对直接机制的解释:

  • 买方被要求报告 θ \theta θ(实话实说)。
  • 买方以 q ( θ ) q(\theta) q(θ)的概率赢得该物品。
  • 买方必须向卖方支付 t ( θ ) t(\theta) t(θ)

问题:我们总能找到一个直接的机制吗?

启示原则

命题(启示录原则)

给定一个具有相应平衡/解决方案的机制,存在一个直接机制,其中

  1. 买方如实报告其价值是一种均衡/解决方案。
  2. 结果与给定机制产生的结果相同。

很明显,这使我们能够大大简化我们的分析,因为它表明,在不丧失一般性的情况下,我们可以把寻找最优机制的工作限制在直接机制上。

确定 q ( θ ) q(\theta) q(θ) t ( θ ) t(\theta) t(θ),其中如实报告 θ \theta θ对买方是最优的。

考虑到直接机制,买方的预期效用变为
u ( θ ) = θ q ( θ ) − t ( θ ) u(\theta) = \theta q(\theta) - t(\theta) u(θ)=θq(θ)t(θ)

3.1.3 特性

定义(激励相容性,IC)

如果对每一个买方类型来说,如实告知都是最优策略,也就是说这个直接机制具备激励相容性:
u ( θ ) = θ q ( θ ) − t ( θ ) ≥ θ q ( θ ′ ) − t ( θ ′ ) , ∀ θ , θ ′ ∈ [ θ ‾ , θ ‾ ] u(\theta) = \theta q(\theta)-t(\theta) \ge \theta q(\theta^{'})-t(\theta^{'}), \forall \theta, \theta^{'} \in [\underline{\theta}, \overline{\theta}] u(θ)=θq(θ)t(θ)θq(θ)t(θ),θ,θ[θ,θ]
定义(个人理性,IR)

如果买方以真实的类型自愿参与拍卖,即这个直接机制满足个人理性:
u ( θ ) ≥ 0 , ∀ θ ∈ [ θ ‾ , θ ‾ ] u(\theta) \ge 0, \forall \theta \in [\underline{\theta}, \overline{\theta}] u(θ)0,θ[θ,θ]
满足IC的条件

引理

如果一个直接机制是激励相容的,那么分配概率q随着θ的增加而增加。

引理

如果一个直接机制是激励相容的,那么买方的效用函数u是递增和凸的,并且满足:
u ′ ( θ ) = ∂ u ( θ ) ∂ θ = q ( θ ) u^{'}(\theta) = \frac{\partial u (\theta)}{\partial \theta} = q(\theta) u(θ)=θu(θ)=q(θ)
引理

如果一个直接机制是激励相容的,那么对于所有 θ ∈ [ θ ‾ , θ ‾ ] \theta \in [\underline{\theta},\overline{\theta}] θ[θθ]有:
u ( θ ) = u ( θ ‾ ) + ∫ θ ‾ θ q ( x ) d x , t ( θ ) = t ( θ ‾ ) + ( θ q ( θ ) − θ ‾ q ( θ ‾ ) ) − ∫ θ ‾ θ q ( x ) d x . \begin{array}{l} u(\theta)=u(\underline{\theta})+\int_{\underline{\theta}}^{\theta} q(x) d x, \\ t(\theta)=t(\underline{\theta})+(\theta q(\theta)-\underline{\theta} q(\underline{\theta}))-\int_{\underline{\theta}}^{\theta} q(x) d x . \end{array} u(θ)=u(θ)+θθq(x)dx,t(θ)=t(θ)+(θq(θ)θq(θ))θθq(x)dx.
命题

一个直接机制(q,t)是激励相容的当且仅当下列条件

  • q是 θ \theta θ的增函数。
  • 对于任意 θ ∈ [ θ ‾ , θ ‾ ] \theta \in [\underline{\theta}, \overline{\theta}] θ[θ,θ],有

t ( θ ) = t ( θ ‾ ) + ( θ q ( θ ) − θ ‾ q ( θ ‾ ) ) − ∫ θ ‾ θ q ( x ) d x . t(\theta)=t(\underline{\theta})+(\theta q(\theta)-\underline{\theta} q(\underline{\theta}))-\int_{\underline{\theta}}^{\theta} q(x) d x . t(θ)=t(θ)+(θq(θ)θq(θ))θθq(x)dx.

IR的条件与影响

命题

当且仅当 u ( θ ) ≥ 0 u(\theta) \ge 0 u(θ)0时,一个激励兼容的机制是个人理性的。

引理

有了IC和IR,为了使卖家的收入最大化,我们应该设定
t ( θ ‾ ) = θ ‾ q ( θ ‾ )  and  t ( θ ) = θ q ( θ ) − ∫ θ ‾ θ q ( x ) d x t(\underline{\theta})=\underline{\theta} q(\underline{\theta}) \quad \text { and } \quad t(\theta)=\theta q(\theta)-\int_{\underline{\theta}}^{\theta} q(x) d x t(θ)=θq(θ) and t(θ)=θq(θ)θθq(x)dx

3.2 为无限可分的项目定价

模型

卖方试图将一个可无限分割的物品,如糖,卖给一个买方。

卖方的目标是使预期收入最大化(风险中立)。

卖方有一个线性生产成本,即生产数量q的物品的成本为cq,其中c>0是一个常数。

买方购买数量q≥0的物品,支付t的效用为:
u = θ v ( q ) − t u=\theta v(q)-t u=θv(q)t
这里,假设 v ( 0 ) = 0 , v ′ ( q ) > 0 , v ′ ′ ( q ) < 0 , ∀ q ≥ 0 v(0)=0, v^{'}(q)>0, v^{''}(q)<0, \forall q \ge 0 v(0)=0,v(q)>0,v′′(q)<0,q0,也就是从0开始,增长的速度越来越缓慢,类似于边际效应。

θ v ( q ) \theta v(q) θv(q)表示买方对数量q的物品的支付意愿。

3.2.1 对 θ \theta θ的假设

参数 θ \theta θ反映了买方对该物品的重视程度。

  • 假设卖方对 θ \theta θ的可能值有一个概率分布。
  • 这种分布可以用CDF F和PDF f描述。
  • F在一个区间 [ θ ‾ , θ ‾ ] [\underline{\theta}, \overline{\theta}] [θ,θ]内,其中 0 < θ ‾ < θ ‾ 0<\underline{\theta}<\overline{\theta} 0<θ<θ;并且$f(\theta)>0,\forall \theta \in [\underline{\theta}, \overline{\theta}] $
  • 在卖方看来, θ \theta θ是一个具有CDF F的随机变量(但实际上它只由买方观察)

定义

一个"直接机制"由函数q和t组成,其中
q : [ θ ‾ , θ ‾ ] ⟶ [ 0 , 1 ] ( 可能性 ) t : [ θ ‾ , θ ‾ ] ⟶ R ( 真实值 ) q:[\underline{\theta}, \overline{\theta}] \longrightarrow [0,1](可能性) \\ t:[\underline{\theta}, \overline{\theta}] \longrightarrow \mathbb{R}(真实值) q:[θ,θ][0,1](可能性)t:[θ,θ]R(真实值)

对直接机制的解释:

  • 买方被要求报告 θ \theta θ(实话实说)。
  • 买方以 q ( θ ) q(\theta) q(θ)的概率赢得该物品。
  • 买方必须向卖方支付 t ( θ ) t(\theta) t(θ)

与单一不可分物品的不同是

买方的效用函数现在是 u ( θ ) = θ v ( q ( θ ) ) − t ( θ ) u(\theta)=\theta v(q(\theta))-t(\theta) u(θ)=θv(q(θ))t(θ)而不是 θ q ( θ ) − t ( θ ) \theta q(\theta)-t(\theta) θq(θ)t(θ)

3.2.3 特性

一个直接机制(q,t)是激励相容的当且仅当下列条件

  • q是 θ \theta θ的增函数。
  • 对于任意 θ ∈ [ θ ‾ , θ ‾ ] \theta \in [\underline{\theta}, \overline{\theta}] θ[θ,θ],有

t ( θ ) = t ( θ ‾ ) + ( θ v ( q ( θ ) ) − θ ‾ v ( q ( θ ‾ ) ) ) − ∫ θ ‾ θ v ( q ( x ) ) d x . t(\theta)=t(\underline{\theta})+(\theta v(q(\theta))-\underline{\theta} v(q(\underline{\theta})))-\int_{\underline{\theta}}^{\theta} v(q(x)) d x . t(θ)=t(θ)+(θv(q(θ))θv(q(θ)))θθv(q(x))dx.

一个激励兼容的机制是个人理性的当且仅当:
u ( θ ‾ ) = t ( θ ‾ ) − θ ‾ v ( q ( θ ‾ ) ) ≥ 0 u(\underline{\theta}) = t(\underline{\theta})-\underline{\theta} v(q(\underline{\theta})) \ge 0 u(θ)=t(θ)θv(q(θ))0

3.2.4 收益最大化

引理

有了IC和IR,为了使卖家的收入最大化,我们应该设定
t ( θ ‾ ) = θ ‾ v ( q ( θ ‾ ) )  and  t ( θ ) = θ v ( q ( θ ) ) − ∫ θ ‾ θ v ( q ( x ) ) d x t(\underline{\theta})=\underline{\theta} v(q(\underline{\theta})) \quad \text { and } \quad t(\theta)=\theta v(q(\theta))-\int_{\underline{\theta}}^{\theta} v(q(x)) d x t(θ)=θv(q(θ)) and t(θ)=θv(q(θ))θθv(q(x))dx
剩余的问题:如何确定函数q(即资源分配)?

回顾一下,卖方的收入等于从买方收取的价格和其生产成本之间的差额

取期望值并代入的表达式,我们有

1

对括号中的表达式进行导数,我们有
v ′ ( q ( θ ) ) ( θ − 1 − F ( θ ) f ( θ ) ) − c = 0 v^{\prime}(q(\theta))\left(\theta-\frac{1-F(\theta)}{f(\theta)}\right)-c=0 v(q(θ))(θf(θ)1F(θ))c=0

v ′ ( q ( θ ) ) ( θ − 1 − F ( θ ) f ( θ ) ) = c v^{\prime}(q(\theta))\left(\theta-\frac{1-F(\theta)}{f(\theta)}\right)=c v(q(θ))(θf(θ)1F(θ))=c
如果 θ − 1 − F ( θ ) f ( θ ) ≤ 0 \theta-\frac{1-F(\theta)}{f(\theta)} \le 0 θf(θ)1F(θ)0,那么最优选择是 q ( θ ) = 0 q(\theta)=0 q(θ)=0,为什么?

如果 θ − 1 − F ( θ ) f ( θ ) > 0 \theta-\frac{1-F(\theta)}{f(\theta)} \gt 0 θf(θ)1F(θ)>0,但 v ′ ( 0 ) ( θ − 1 − F ( θ ) f ( θ ) ) ≤ c v^{\prime}(0)\left(\theta-\frac{1-F(\theta)}{f(\theta)}\right) \le c v(0)(θf(θ)1F(θ))c,那么最优解 q ( θ ) = 0 q(\theta)=0 q(θ)=0。为什么?

如果 θ − 1 − F ( θ ) f ( θ ) > 0 \theta-\frac{1-F(\theta)}{f(\theta)} \gt 0 θf(θ)1F(θ)>0,但 v ′ ( 0 ) ( θ − 1 − F ( θ ) f ( θ ) ) > c v^{\prime}(0)\left(\theta-\frac{1-F(\theta)}{f(\theta)}\right) \gt c v(0)(θf(θ)1F(θ))>c,那么最优解 q ( θ ) q(\theta) q(θ)可以通过求解上述方程得到。

剩余的问题: q是否是 θ \theta θ的增函数?

给定以下假设,q一定是 θ \theta θ的增函数

假设

θ − 1 − F ( θ ) f ( θ ) \theta-\frac{1-F(\theta)}{f(\theta)} θf(θ)1F(θ) θ \theta θ的增函数

注意

这就是所谓的 increasing hazard rate 条件。

如果一个分布F满足这样的条件,那么它就被称为 regular 的。

3.2.5 最优解决方案

命题

假设F是 regular 的。那么,一个预期利润最大化的q的选择是由以下公式给出

  1. 如果 v ′ ( 0 ) ( θ − 1 − F ( θ ) f ( θ ) ) ≤ c v^{\prime}(0)\left(\theta-\frac{1-F(\theta)}{f(\theta)}\right) \le c v(0)(θf(θ)1F(θ))c,我们有 q ( θ ) = 0 q(\theta)=0 q(θ)=0
  2. 否则,通过求解 v ′ ( q ( θ ) ) ( θ − 1 − F ( θ ) f ( θ ) ) = c v^{\prime}(q(\theta))\left(\theta-\frac{1-F(\theta)}{f(\theta)}\right)=c v(q(θ))(θf(θ)1F(θ))=c得到最优的 q ( θ ) q(\theta) q(θ)

利润最大化的t由以下公式给出
t ( θ ) = θ v ( q ( θ ) ) − ∫ θ ‾ θ v ( q ( x ) ) d x t(\theta)=\theta v(q(\theta))-\int_{\underline{\theta}}^{\theta} v(q(x)) d x t(θ)=θv(q(θ))θθv(q(x))dx

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值