- 逆向选择定义
逆向选择就是在交易中有未公开的私有化信息。比如车的经销商和车的质量,企业家和这个项目的实际利润等,买保险的人和他的患病的情况。
Screening 就是没有信息的一方提供合同,signaling 就是有信息的一方提供合同。 - 最简单的逆向选择模型
一个卖家想卖一些商品给买家,但卖者不知道这些商品对于买家的价值。也就是说卖家不知道对于数量为q的商品,买家愿意出多少钱。
如何构建模型呢?
假设买家的效用可以表示为
U ( q , T , θ ) = θ v ( q ) − T U(q,T,\theta)=\theta v(q)-T U(q,T,θ)=θv(q)−T
其中q是买家买到的商品数量,T是付给卖家的钱,v(q) 是买家在q单位商品中获得的效用。假设v为 c 2 c^2 c2形式的函数,并且v(0)=0.
类型 θ \theta θ是买家的私有信息,卖家仅仅知道 θ \theta θ的分布F。
卖家的效用为
π = T − c q \pi=T-cq π=T−cq
c是商品的成本,T为收到买家的钱。
那么问题来了:怎样的(T,q)可以最大化卖家的利益?
为了简单化,设只有两种类型的买家, β \beta β的概率为 θ = θ L \theta=\theta_L θ=θL , 1 − β 1-\beta 1−β的概率为 θ = θ H \theta=\theta_H θ=θH,其中 θ H > θ L \theta_H>\theta_L θH>θL - First Best Outcome: 一级价格歧视
如果卖家可以知道买家的类型,会是怎样的情形?
那么唯一的限制就是让买家买了以后比不买强:
θ i v ( q i ) − T i ≥ u ‾ \theta_iv(q_i)-T_i\ge \underline u θiv(qi)−Ti≥u
那么对于卖家的问题就是
max T i − c q i s.t. θ i v ( q i ) − T i ≥ u ‾ \text{max } T_i-cq_i\\ \quad \text{s.t. }\theta_iv(q_i)-T_i\ge \underline u max Ti−cqis.t. θiv(qi)−Ti≥u - 两部定价就是最好的合同
解上式可得 θ i v ′ ( q i ) = c θ i v ( q i ) − T i = u ‾ \theta_iv'(q_i)=c\\ \theta_iv(q_i)-T_i= \underline u θiv′(qi)=cθiv(qi)−Ti=u
这时边际成本等于边际收益。两部定价就是买家可以买他希望的数量,但是要付手续费 θ i v ( q i ) − c q i − u ‾ \theta _iv(q_i)-cq_i-\underline u θiv(qi)−cqi−u,也就是卖家取走所有的消费者剩余。 - 若卖家不知道买家的类型呢?
这时高需求类型的买家H会伪装成低需求类型的买家L,这是因为
θ H v ( q L ) − T L > θ L v ( q L ) − T L = u ‾ \theta_H v(q_L)-T_L> \theta_Lv(q_L)-T_L=\underline u θHv(qL)−TL>θLv(qL)−TL=u
那么问题来了:
L会伪装成H吗?第三价格歧视是什么? - Second Best: 线性定价
最简单的线性定价下, 对于商品数量q,价格定为T(q)=Pq。
那么卖家的问题变为
max θ i v ( q i ) − P q i \text{max } \theta_iv(q_i) -Pq_i max θiv(qi)−Pqi
得
θ i v ′ ( q i ) = P \theta_iv'(q_i)=P θiv′(qi)=P
写为 q i q_i qi的函数:
q i = ( v ′ ) − 1 ( P θ i ) = D i ( P ) q_i=(v')^{-1}(\frac{P}{\theta^i})=D_i(P) qi=(v′)−1(θiP)=Di(P)
那么需求函数为
D ~ i ( P ) = { 0 , if P ≥ θ i v ′ ( 0 ) D i ( P ) , if P < θ i v ′ ( 0 ) \tilde D_i(P)=\begin{cases}0, \text{ if } P\ge \theta_iv'(0)\\D_i(P) \text{, if } P <\theta_iv'(0)\end{cases} D~i(P)={0, if P≥θiv′(0)Di(P), if P<θiv′(0)
那么对于卖家来说,需求的期望为
D ( P ) = β D L ( P ) + ( 1 − β ) D H ( P ) D(P)=\beta D_L(P)+(1-\beta)D_H(P) D(P)=βDL(P)+(1−β)DH(P)
进而,卖家的最优化问题为
max ( P − c ) ( β D L ( P ) + ( 1 − β ) D H ( P ) ) = max ( P − C ) D ( P ) \text {max } (P-c)(\beta D_L(P)+(1-\beta)D_H(P))= \text{max }(P-C)D(P) max (P−c)(βDL(P)+(1−β)DH(P))=max (P−C)D(P)
在这种情况下卖家有可能不为L类型买家提供服务。
考虑以下问题:
在什么情况下最优解是给所有类型的买家提供服务?
卖家如果使用更复杂的定价方式能否取得更高的利益?
注意我们假设这里没有二手市场。
我们仅仅考虑两个元素(Z,P),其中Z为入门费,P为单位商品价格。则买家付给卖家的钱为 Z + P D i ( P ) Z+PD_i(P) Z+PDi(P),买家收到 Z + P D ( P ) Z+PD(P) Z+PD(P)
那么卖家的优化问题变为
max Z + ( P − c ) D ( P ) θ i v ( D i ( P ) ) − P D i ( P ) − Z ≥ 0 \text{max } Z+(P-c)D(P)\\ \theta_iv(D_i(P))-PD_i(P)-Z\ge 0 max Z+(P−c)D(P)θiv(Di(P))−PDi(P)−Z≥0
为了表示方面,令
S i ( P ) = θ i v ( D i ( P ) ) − P D i ( P ) S_i(P)=\theta_iv(D_i(P))-PD_i(P) Si(P)=θiv(Di(P))−PDi(P)
卖家优化问题为
max Z + ( P − c ) D ( P ) S H ( P ) − Z ≥ 0 S L ( P ) − Z ≥ 0 \text{max } Z+(P-c)D(P)\\ S_H(P)-Z\ge 0\\ S_L(P)-Z\ge 0 max Z+(P−c)D(P)SH(P)−Z≥0SL(P)−Z≥0
拉格朗日函数
F ( P , λ H , λ L ) = Z + ( P − c ) D ( P ) + λ H ( S H ( P ) − Z ) + λ L ( S L ( P ) − Z ) F(P,\lambda_H,\lambda_L)=Z+(P-c)D(P)+\lambda_H(S_H(P)-Z)+\lambda_L(S_L(P)-Z) F(P,λH,λL)=Z+(P−c)D(P)+λH(SH(P)−Z)+λL(SL(P)−Z)
FOC:
( P − c ) D ′ ( P ) + D ( P ) + λ L ( P ) S L ′ ( P ) + λ H ( P ) S H ′ ( P ) = 0 (P-c)D'(P)+D(P)+\lambda_L(P)S_L'(P)+\lambda_H(P)S_H'(P)=0 (P−c)D′(P)+D(P)+λL(P)SL′(P)+λH(P)SH′(P)=0
若卖家服务两种类型的买家,那么 Z ≤ S L ( P ) < S H ( P ) Z\le S_L(P)<S_H(P) Z≤SL(P)<SH(P)
那么 λ H = 0 , λ L = 1 \lambda_H=0,\lambda_L=1 λH=0,λL=1
所以
Z = S L ( P ) P = c − D ( P ) + S L ′ ( P ) D ′ ( P ) Z=S_L(P)\\ P=c-\frac{D(P)+S_L'(P)}{D'(P)} Z=SL(P)P=c−D′(P)D(P)+SL′(P)
根据包络定理
S L ′ ( P ) = − D L ( P ) S'_L(P)=-D_L(P) SL′(P)=−DL(P)
那么
P = c − D ( P ) − D L ( P ) D ′ ( P ) > c P=c-\frac{D(P)-D_L(P)}{D'(P)}>c P=c−D′(P)D(P)−DL(P)>c
统一的价格(P_m)大于两部定价(P_d) - 非线性定价
在这种情况下,卖家的最优化问题是什么?
假设函数T(q)表示买家买q单位商品要付出的钱,买家要最大化他的收益:
q i ∈ a r g m a x q ^ θ i v ( q ^ ) − T ∗ ( q ^ ) q_i\in argmax \quad \hat q\theta_iv(\hat q)-T*(\hat q) qi∈argmaxq^θiv(q^)−T∗(q^)
那么卖家的最优化问题为
max β ( T ( q L ) − c q L ) + ( 1 − β ) ( T ( q H ) − c q H ) θ i v ( q i ) − T ( q i ) ≥ θ i v ( q j ) − T ( q j ) ( i ≠ j ) θ i v ( q i ) − T ( q i ) ≥ 0 \text{max } \beta(T(q_L)-cq_L)+(1-\beta)(T(q_H)-cq_H)\\ \theta_iv(q_i)-T(q_i)\ge \theta_iv(q_j)-T(q_j)(i\not =j)\\ \theta _i v(q_i)-T(q_i)\ge 0 max β(T(qL)−cqL)+(1−β)(T(qH)−cqH)θiv(qi)−T(qi)≥θiv(qj)−T(qj)(i=j)θiv(qi)−T(qi)≥0
考虑以下方案:
T ~ ( q ) = { T i ∗ for q = q i , ∞ , for q ≠ q i \tilde T(q)=\begin{cases}T_i^*\quad \text{for }q=q_i,\\ \infty,\text{ for }q\not =q_i\end{cases} T~(q)={Ti∗for q=qi,∞, for q=qi
记 u i u_i ui为i类型的买家的效用,即
u H = θ H v ( q H ) − T H u L = θ L v ( q L ) − T L u_H=\theta_Hv(q_H)-T_H\\ u_L=\theta_Lv(q_L)-T_L uH=θHv(qH)−THuL=θLv(qL)−TL那么卖家最优化问题中的相容约束
θ H v ( q H ) − T ( q H ) ≥ θ H v ( q L ) − T ( q L ) θ L v ( q L ) − T ( q L ) ≥ θ L v ( q H ) − T ( q H ) \theta_Hv(q_H)-T(q_H)\ge \theta_Hv(q_L)-T(q_L)\\\theta_Lv(q_L)-T(q_L)\ge \theta_Lv(q_H)-T(q_H) θHv(qH)−T(qH)≥θHv(qL)−T(qL)θLv(qL)−T(qL)≥θLv(qH)−T(qH)
可以写为
u H ≥ θ H v ( q L ) − T L = u L + ( θ H − θ L ) v ( q L ) u L ≥ θ L v ( q H ) − T H = u H − ( θ H − θ L ) v ( q H ) u_H\ge \theta_Hv(q_L)-T_L=u_L+(\theta_H-\theta_L)v(q_L)\\ u_L\ge \theta_Lv(q_H)-T_H=u_H-(\theta_H-\theta_L)v(q_H) uH≥θHv(qL)−TL=uL+(θH−θL)v(qL)uL≥θLv(qH)−TH=uH−(θH−θL)v(qH)
我们注意到
θ H v ( q H ) − T H ≥ θ H v ( q L ) − T L ≥ θ L v ( q L ) − T L ≥ 0 \theta_Hv(q_H)-T_H\\\ge\theta_Hv(q_L)-T_L\\\ge \theta_Lv(q_L)-T_L\ge 0 θHv(qH)−TH≥θHv(qL)−TL≥θLv(qL)−TL≥0
也就是说,当 θ L v ( q L ) − T L ≥ 0 \theta_Lv(q_L)-T_L\ge 0 θLv(qL)−TL≥0成立时, θ H v ( q H ) − T H ≥ 0 \theta_Hv(q_H)-T_H\\\ge0 θHv(qH)−TH≥0一定成立。所以只有 θ L v ( q L ) − T L ≥ 0 \theta_Lv(q_L)-T_L\ge 0 θLv(qL)−TL≥0这个条件就够了。
我们重写卖家最优化问题为:
max β ( T l − c q L ) + ( 1 − β ) ( T H − c q H ) θ L v ( q L ) − T L = 0 θ H v ( q H ) − T H = ( θ H − θ L ) v ( q L ) \text{max } \beta(T_l-cq_L)+(1-\beta)(T_H-cq_H)\\ \theta_Lv(q_L)-T_L=0\\ \theta_Hv(q_H)-T_H=(\theta_H-\theta_L)v(q_L) max β(Tl−cqL)+(1−β)(TH−cqH)θLv(qL)−TL=0θHv(qH)−TH=(θH−θL)v(qL) - 多于两种类型的情况
假设买家的效用为 θ i v ( q ) − T \theta_iv(q)-T θiv(q)−T
θ 1 < . . < θ n \theta_1<..<\theta_n θ1<..<θn
β i \beta_i βi为 θ i \theta_i θi所占比例。
那么卖家的问题为
max ∑ ( T i − c q i ) β i θ i v ( q i ) − T i ≥ 0 θ i v ( q i ) − T i ≥ θ i v ( q j ) − T j \text{max }\sum (T_i-cq_i)\beta_i\\ \theta_iv(q_i)-T_i\ge0\\\theta_iv(q_i)-T_i\ge\theta_iv(q_j)-T_j max ∑(Ti−cqi)βiθiv(qi)−Ti≥0θiv(qi)−Ti≥θiv(qj)−Tj
同两种类型的一样,最后一个 θ 1 v ( q 1 ) − T 1 ≥ 0 \theta_1v(q_1)-T_1\ge0 θ1v(q1)−T1≥0成立时,前面所有 θ i v ( q i ) − T i ≥ 0 \theta_iv(q_i)-T_i\ge 0 θiv(qi)−Ti≥0都成立。
对于第二个约束可写为
θ i v ( q i ) − T i ≥ θ i v ( q j ) − T j θ j v ( q i ) − T i ≤ θ j v ( q j ) − T j \theta_iv(q_i)-T_i\ge\theta_iv(q_j)-T_j\\ \theta_jv(q_i)-T_i\le\theta_jv(q_j)-T_j θiv(qi)−Ti≥θiv(qj)−Tjθjv(qi)−Ti≤θjv(qj)−Tj
得到
( θ i − θ j ) v ( q i ) ≥ ( θ i − θ j ) v ( q j ) ( θ i − θ j ) ( v ( q i ) − v ( q j ) ) ≥ 0 (\theta_i-\theta_j)v(q_i)\ge (\theta_i-\theta_j)v(q_j) \\ (\theta_i-\theta_j)(v(q_i)-v(q_j))\ge 0 (θi−θj)v(qi)≥(θi−θj)v(qj)(θi−θj)(v(qi)−v(qj))≥0
即
θ i ≥ θ j \theta_i\ge \theta_j θi≥θj意味着 q i ≥ q j q_i\ge q_j qi≥qj
考虑三种类型:
θ i − 1 < θ i < θ i + 1 \theta_{i-1}<\theta_i<\theta_{i+1} θi−1<θi<θi+1
约束为 θ i + 1 v ( q i + 1 ) − T i + 1 ≥ θ i + 1 v ( q i ) − T i θ i v ( q i ) − T i ≥ θ i v ( q i − 1 ) − T i − 1 \theta_{i+1}v(q_{i+1})-T_{i+1}\ge\theta_{i+1}v(q_i)-T_i\\ \theta_iv(q_i)-T_i\ge \theta_iv(q_{i-1})-T_{i-1} θi+1v(qi+1)−Ti+1≥θi+1v(qi)−Tiθiv(qi)−Ti≥θiv(qi−1)−Ti−1
整理得
T i − T i − 1 ≤ θ i ( v ( q i ) − v ( q i − 1 ) ≤ θ i + 1 ( v ( q i ) − v ( q i − 1 ) ) T_i-T_{i-1}\le\theta_i(v(qi)-v(q_{i-1})\le\theta_{i+1}(v(q_i)-v(q_{i-1})) Ti−Ti−1≤θi(v(qi)−v(qi−1)≤θi+1(v(qi)−v(qi−1))
进而
θ i + 1 v ( q i + 1 ) − T i + 1 ≥ θ i + 1 v ( q i ) − T i ≥ θ i + 1 v ( q i − 1 ) − T i − 1 \theta_{i+1}v(q_{i+1})-T_{i+1}\ge\\\theta_{i+1}v(q_i)-T_i\ge\\\theta_{i+1}v(q_{i-1})-T_{i-1} θi+1v(qi+1)−Ti+1≥θi+1v(qi)−Ti≥θi+1v(qi−1)−Ti−1
逆向选择之Screening
最新推荐文章于 2025-03-10 17:08:06 发布