逆向选择之Screening

  • 逆向选择定义
    逆向选择就是在交易中有未公开的私有化信息。比如车的经销商和车的质量,企业家和这个项目的实际利润等,买保险的人和他的患病的情况。
    Screening 就是没有信息的一方提供合同,signaling 就是有信息的一方提供合同。
  • 最简单的逆向选择模型
    一个卖家想卖一些商品给买家,但卖者不知道这些商品对于买家的价值。也就是说卖家不知道对于数量为q的商品,买家愿意出多少钱。
    如何构建模型呢?
    假设买家的效用可以表示为
    U ( q , T , θ ) = θ v ( q ) − T U(q,T,\theta)=\theta v(q)-T U(q,T,θ)=θv(q)T
    其中q是买家买到的商品数量,T是付给卖家的钱,v(q) 是买家在q单位商品中获得的效用。假设v为 c 2 c^2 c2形式的函数,并且v(0)=0.
    类型 θ \theta θ是买家的私有信息,卖家仅仅知道 θ \theta θ的分布F。
    卖家的效用为
    π = T − c q \pi=T-cq π=Tcq
    c是商品的成本,T为收到买家的钱。
    那么问题来了:怎样的(T,q)可以最大化卖家的利益?
    为了简单化,设只有两种类型的买家, β \beta β的概率为 θ = θ L \theta=\theta_L θ=θL , 1 − β 1-\beta 1β的概率为 θ = θ H \theta=\theta_H θ=θH,其中 θ H > θ L \theta_H>\theta_L θH>θL
  • First Best Outcome: 一级价格歧视
    如果卖家可以知道买家的类型,会是怎样的情形?
    那么唯一的限制就是让买家买了以后比不买强:
    θ i v ( q i ) − T i ≥ u ‾ \theta_iv(q_i)-T_i\ge \underline u θiv(qi)Tiu
    那么对于卖家的问题就是
    max  T i − c q i s.t.  θ i v ( q i ) − T i ≥ u ‾ \text{max } T_i-cq_i\\ \quad \text{s.t. }\theta_iv(q_i)-T_i\ge \underline u max Ticqis.t. θiv(qi)Tiu
  • 两部定价就是最好的合同
    解上式可得 θ i v ′ ( q i ) = c θ i v ( q i ) − T i = u ‾ \theta_iv'(q_i)=c\\ \theta_iv(q_i)-T_i= \underline u θiv(qi)=cθiv(qi)Ti=u
    这时边际成本等于边际收益。两部定价就是买家可以买他希望的数量,但是要付手续费 θ i v ( q i ) − c q i − u ‾ \theta _iv(q_i)-cq_i-\underline u θiv(qi)cqiu,也就是卖家取走所有的消费者剩余。
  • 若卖家不知道买家的类型呢?
    这时高需求类型的买家H会伪装成低需求类型的买家L,这是因为
    θ H v ( q L ) − T L > θ L v ( q L ) − T L = u ‾ \theta_H v(q_L)-T_L> \theta_Lv(q_L)-T_L=\underline u θHv(qL)TL>θLv(qL)TL=u
    那么问题来了:
    L会伪装成H吗?第三价格歧视是什么?
  • Second Best: 线性定价
    最简单的线性定价下, 对于商品数量q,价格定为T(q)=Pq。
    那么卖家的问题变为
    max  θ i v ( q i ) − P q i \text{max } \theta_iv(q_i) -Pq_i max θiv(qi)Pqi

    θ i v ′ ( q i ) = P \theta_iv'(q_i)=P θiv(qi)=P
    写为 q i q_i qi的函数:
    q i = ( v ′ ) − 1 ( P θ i ) = D i ( P ) q_i=(v')^{-1}(\frac{P}{\theta^i})=D_i(P) qi=(v)1(θiP)=Di(P)
    那么需求函数为
    D ~ i ( P ) = { 0 ,  if  P ≥ θ i v ′ ( 0 ) D i ( P ) , if  P < θ i v ′ ( 0 ) \tilde D_i(P)=\begin{cases}0, \text{ if } P\ge \theta_iv'(0)\\D_i(P) \text{, if } P <\theta_iv'(0)\end{cases} D~i(P)={0, if Pθiv(0)Di(P), if P<θiv(0)
    那么对于卖家来说,需求的期望为
    D ( P ) = β D L ( P ) + ( 1 − β ) D H ( P ) D(P)=\beta D_L(P)+(1-\beta)D_H(P) D(P)=βDL(P)+(1β)DH(P)
    进而,卖家的最优化问题为
    max  ( P − c ) ( β D L ( P ) + ( 1 − β ) D H ( P ) ) = max  ( P − C ) D ( P ) \text {max } (P-c)(\beta D_L(P)+(1-\beta)D_H(P))= \text{max }(P-C)D(P) max (Pc)(βDL(P)+(1β)DH(P))=max (PC)D(P)
    在这种情况下卖家有可能不为L类型买家提供服务。
    考虑以下问题:
    在什么情况下最优解是给所有类型的买家提供服务?
    卖家如果使用更复杂的定价方式能否取得更高的利益?
    注意我们假设这里没有二手市场。
    我们仅仅考虑两个元素(Z,P),其中Z为入门费,P为单位商品价格。则买家付给卖家的钱为 Z + P D i ( P ) Z+PD_i(P) Z+PDi(P),买家收到 Z + P D ( P ) Z+PD(P) Z+PD(P)
    那么卖家的优化问题变为
    max  Z + ( P − c ) D ( P ) θ i v ( D i ( P ) ) − P D i ( P ) − Z ≥ 0 \text{max } Z+(P-c)D(P)\\ \theta_iv(D_i(P))-PD_i(P)-Z\ge 0 max Z+(Pc)D(P)θiv(Di(P))PDi(P)Z0
    为了表示方面,令
    S i ( P ) = θ i v ( D i ( P ) ) − P D i ( P ) S_i(P)=\theta_iv(D_i(P))-PD_i(P) Si(P)=θiv(Di(P))PDi(P)
    卖家优化问题为
    max  Z + ( P − c ) D ( P ) S H ( P ) − Z ≥ 0 S L ( P ) − Z ≥ 0 \text{max } Z+(P-c)D(P)\\ S_H(P)-Z\ge 0\\ S_L(P)-Z\ge 0 max Z+(Pc)D(P)SH(P)Z0SL(P)Z0
    拉格朗日函数
    F ( P , λ H , λ L ) = Z + ( P − c ) D ( P ) + λ H ( S H ( P ) − Z ) + λ L ( S L ( P ) − Z ) F(P,\lambda_H,\lambda_L)=Z+(P-c)D(P)+\lambda_H(S_H(P)-Z)+\lambda_L(S_L(P)-Z) F(P,λH,λL)=Z+(Pc)D(P)+λH(SH(P)Z)+λL(SL(P)Z)
    FOC:
    ( P − c ) D ′ ( P ) + D ( P ) + λ L ( P ) S L ′ ( P ) + λ H ( P ) S H ′ ( P ) = 0 (P-c)D'(P)+D(P)+\lambda_L(P)S_L'(P)+\lambda_H(P)S_H'(P)=0 (Pc)D(P)+D(P)+λL(P)SL(P)+λH(P)SH(P)=0
    若卖家服务两种类型的买家,那么 Z ≤ S L ( P ) < S H ( P ) Z\le S_L(P)<S_H(P) ZSL(P)<SH(P)
    那么 λ H = 0 , λ L = 1 \lambda_H=0,\lambda_L=1 λH=0,λL=1
    所以
    Z = S L ( P ) P = c − D ( P ) + S L ′ ( P ) D ′ ( P ) Z=S_L(P)\\ P=c-\frac{D(P)+S_L'(P)}{D'(P)} Z=SL(P)P=cD(P)D(P)+SL(P)
    根据包络定理
    S L ′ ( P ) = − D L ( P ) S'_L(P)=-D_L(P) SL(P)=DL(P)
    那么
    P = c − D ( P ) − D L ( P ) D ′ ( P ) > c P=c-\frac{D(P)-D_L(P)}{D'(P)}>c P=cD(P)D(P)DL(P)>c
    统一的价格(P_m)大于两部定价(P_d)
  • 非线性定价
    在这种情况下,卖家的最优化问题是什么?
    假设函数T(q)表示买家买q单位商品要付出的钱,买家要最大化他的收益:
    q i ∈ a r g m a x q ^ θ i v ( q ^ ) − T ∗ ( q ^ ) q_i\in argmax \quad \hat q\theta_iv(\hat q)-T*(\hat q) qiargmaxq^θiv(q^)T(q^)
    那么卖家的最优化问题为
    max  β ( T ( q L ) − c q L ) + ( 1 − β ) ( T ( q H ) − c q H ) θ i v ( q i ) − T ( q i ) ≥ θ i v ( q j ) − T ( q j ) ( i ≠ j ) θ i v ( q i ) − T ( q i ) ≥ 0 \text{max } \beta(T(q_L)-cq_L)+(1-\beta)(T(q_H)-cq_H)\\ \theta_iv(q_i)-T(q_i)\ge \theta_iv(q_j)-T(q_j)(i\not =j)\\ \theta _i v(q_i)-T(q_i)\ge 0 max β(T(qL)cqL)+(1β)(T(qH)cqH)θiv(qi)T(qi)θiv(qj)T(qj)(i=j)θiv(qi)T(qi)0
    考虑以下方案:
    T ~ ( q ) = { T i ∗ for  q = q i , ∞ ,  for  q ≠ q i \tilde T(q)=\begin{cases}T_i^*\quad \text{for }q=q_i,\\ \infty,\text{ for }q\not =q_i\end{cases} T~(q)={Tifor q=qi,, for q=qi
    u i u_i ui为i类型的买家的效用,即
    u H = θ H v ( q H ) − T H u L = θ L v ( q L ) − T L u_H=\theta_Hv(q_H)-T_H\\ u_L=\theta_Lv(q_L)-T_L uH=θHv(qH)THuL=θLv(qL)TL那么卖家最优化问题中的相容约束
    θ H v ( q H ) − T ( q H ) ≥ θ H v ( q L ) − T ( q L ) θ L v ( q L ) − T ( q L ) ≥ θ L v ( q H ) − T ( q H ) \theta_Hv(q_H)-T(q_H)\ge \theta_Hv(q_L)-T(q_L)\\\theta_Lv(q_L)-T(q_L)\ge \theta_Lv(q_H)-T(q_H) θHv(qH)T(qH)θHv(qL)T(qL)θLv(qL)T(qL)θLv(qH)T(qH)
    可以写为
    u H ≥ θ H v ( q L ) − T L = u L + ( θ H − θ L ) v ( q L ) u L ≥ θ L v ( q H ) − T H = u H − ( θ H − θ L ) v ( q H ) u_H\ge \theta_Hv(q_L)-T_L=u_L+(\theta_H-\theta_L)v(q_L)\\ u_L\ge \theta_Lv(q_H)-T_H=u_H-(\theta_H-\theta_L)v(q_H) uHθHv(qL)TL=uL+(θHθL)v(qL)uLθLv(qH)TH=uH(θHθL)v(qH)
    我们注意到
    θ H v ( q H ) − T H ≥ θ H v ( q L ) − T L ≥ θ L v ( q L ) − T L ≥ 0 \theta_Hv(q_H)-T_H\\\ge\theta_Hv(q_L)-T_L\\\ge \theta_Lv(q_L)-T_L\ge 0 θHv(qH)THθHv(qL)TLθLv(qL)TL0
    也就是说,当 θ L v ( q L ) − T L ≥ 0 \theta_Lv(q_L)-T_L\ge 0 θLv(qL)TL0成立时, θ H v ( q H ) − T H ≥ 0 \theta_Hv(q_H)-T_H\\\ge0 θHv(qH)TH0一定成立。所以只有 θ L v ( q L ) − T L ≥ 0 \theta_Lv(q_L)-T_L\ge 0 θLv(qL)TL0这个条件就够了。
    我们重写卖家最优化问题为:
    max  β ( T l − c q L ) + ( 1 − β ) ( T H − c q H ) θ L v ( q L ) − T L = 0 θ H v ( q H ) − T H = ( θ H − θ L ) v ( q L ) \text{max } \beta(T_l-cq_L)+(1-\beta)(T_H-cq_H)\\ \theta_Lv(q_L)-T_L=0\\ \theta_Hv(q_H)-T_H=(\theta_H-\theta_L)v(q_L) max β(TlcqL)+(1β)(THcqH)θLv(qL)TL=0θHv(qH)TH=(θHθL)v(qL)
  • 多于两种类型的情况
    假设买家的效用为 θ i v ( q ) − T \theta_iv(q)-T θiv(q)T
    θ 1 < . . < θ n \theta_1<..<\theta_n θ1<..<θn
    β i \beta_i βi θ i \theta_i θi所占比例。
    那么卖家的问题为
    max  ∑ ( T i − c q i ) β i θ i v ( q i ) − T i ≥ 0 θ i v ( q i ) − T i ≥ θ i v ( q j ) − T j \text{max }\sum (T_i-cq_i)\beta_i\\ \theta_iv(q_i)-T_i\ge0\\\theta_iv(q_i)-T_i\ge\theta_iv(q_j)-T_j max (Ticqi)βiθiv(qi)Ti0θiv(qi)Tiθiv(qj)Tj
    同两种类型的一样,最后一个 θ 1 v ( q 1 ) − T 1 ≥ 0 \theta_1v(q_1)-T_1\ge0 θ1v(q1)T10成立时,前面所有 θ i v ( q i ) − T i ≥ 0 \theta_iv(q_i)-T_i\ge 0 θiv(qi)Ti0都成立。
    对于第二个约束可写为
    θ i v ( q i ) − T i ≥ θ i v ( q j ) − T j θ j v ( q i ) − T i ≤ θ j v ( q j ) − T j \theta_iv(q_i)-T_i\ge\theta_iv(q_j)-T_j\\ \theta_jv(q_i)-T_i\le\theta_jv(q_j)-T_j θiv(qi)Tiθiv(qj)Tjθjv(qi)Tiθjv(qj)Tj
    得到
    ( θ i − θ j ) v ( q i ) ≥ ( θ i − θ j ) v ( q j ) ( θ i − θ j ) ( v ( q i ) − v ( q j ) ) ≥ 0 (\theta_i-\theta_j)v(q_i)\ge (\theta_i-\theta_j)v(q_j) \\ (\theta_i-\theta_j)(v(q_i)-v(q_j))\ge 0 (θiθj)v(qi)(θiθj)v(qj)(θiθj)(v(qi)v(qj))0

    θ i ≥ θ j \theta_i\ge \theta_j θiθj意味着 q i ≥ q j q_i\ge q_j qiqj
    考虑三种类型:
    θ i − 1 < θ i < θ i + 1 \theta_{i-1}<\theta_i<\theta_{i+1} θi1<θi<θi+1
    约束为 θ i + 1 v ( q i + 1 ) − T i + 1 ≥ θ i + 1 v ( q i ) − T i θ i v ( q i ) − T i ≥ θ i v ( q i − 1 ) − T i − 1 \theta_{i+1}v(q_{i+1})-T_{i+1}\ge\theta_{i+1}v(q_i)-T_i\\ \theta_iv(q_i)-T_i\ge \theta_iv(q_{i-1})-T_{i-1} θi+1v(qi+1)Ti+1θi+1v(qi)Tiθiv(qi)Tiθiv(qi1)Ti1
    整理得
    T i − T i − 1 ≤ θ i ( v ( q i ) − v ( q i − 1 ) ≤ θ i + 1 ( v ( q i ) − v ( q i − 1 ) ) T_i-T_{i-1}\le\theta_i(v(qi)-v(q_{i-1})\le\theta_{i+1}(v(q_i)-v(q_{i-1})) TiTi1θi(v(qi)v(qi1)θi+1(v(qi)v(qi1))
    进而
    θ i + 1 v ( q i + 1 ) − T i + 1 ≥ θ i + 1 v ( q i ) − T i ≥ θ i + 1 v ( q i − 1 ) − T i − 1 \theta_{i+1}v(q_{i+1})-T_{i+1}\ge\\\theta_{i+1}v(q_i)-T_i\ge\\\theta_{i+1}v(q_{i-1})-T_{i-1} θi+1v(qi+1)Ti+1θi+1v(qi)Tiθi+1v(qi1)Ti1
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值