题目链接
题目意思
给你两个数n,k。接着给你一个包含1~n的序列,让你求这个序列中所有子序列中第k大值的和,当然了序列是不能改变的。
解题思路
一开始以为是主席树,也是类似求在不改变序列的条件下,求区间的第k大值,然后就是把所有情况都加一遍。
我们只要求出对于一个数x左边最近的k个比他大的和右边最近k个比他大的,扫一下就可以知道有几个区间的k大值是x。
我们考虑从小到大枚举x,每次维护一个链表,链表里只有>=x的数,那么往左往右找只要暴力跳k次,删除也是O(1)的。
时间复杂度:O(nk)
代码部分
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=5e5+7;
int t,n,k,a[N],idx[N];///a表示的是这个数组,idx表示的是某个数在的位置
struct Node
{
int pre,nxt,idx;
} node[N];
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]),idx[a[i]]=i;
node[i]=Node {i-1,i+1,i};
}
node[n+1].idx=n+1;
ll ans=0;
for(int i=1;i<=n;i++)///找到当前这个数
{
int l=idx[i],r=idx[i];///左端点,右端点
int cntl=1,cntr=0;///往前、往后找的数的个数
while(cntl<k)///往前找,看有这个数的前面有多少个数
{
if(node[l].pre==0)
break;///左端点已经是第一个元素了
cntl++,l=node[l].pre;
}
while(cntl)///在前面有这么多数的基础上
{
while(cntr+cntl>k)///左右区间的个数大于k了
{
cntr--,r=node[r].pre;///右区间往前移动
}
while(cntl+cntr<k)///左右区间的个数小于k了
{
if(node[r].nxt==n+1)break;///移动到最后也就结束了,不能再往后移动
cntr++,r=node[r].nxt;///右区间往后移动
}
if(cntl+cntr==k)///正好左右区间中有这么多数
{
int L=node[l].idx-node[node[l].pre].idx;///左边涉及的区间
int R=node[node[r].nxt].idx-node[r].idx;///右边涉及的区间
ans+=1ll*L*R*i;
//printf("L====%d R====%d i===%d\n",L,R,i);
}
l=node[l].nxt,cntl--;///左区间往后移动
}
node[node[idx[i]].pre].nxt=node[idx[i]].nxt;
node[node[idx[i]].nxt].pre=node[idx[i]].pre;
}
printf("%lld\n",ans);
}
return 0;
}