网易2018校招 魔法币【模拟】

本文介绍了一种通过递归方式解决特定数学问题的方法。利用已知条件从目标数值出发逐步反推,直至达到基本情况(本例中为0)。具体算法为:当目标数值为偶数时,将该数值减2后除以2;若为奇数,则减1后除以2。最终得到的操作序列反转即为解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

题目意思
这里写图片描述

解题思路

我们用知道的n去反推,如果是偶数就让n=(n-2)/2,否则就让n=(n-1)/2。直到n=0。这样我们得到的是方案是反过来的,我们将结果反过来输出就可以了。

代码部分

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <cstring>
#include <algorithm>
using namespace std;
int main()
{
    int n;
    scanf("%d",&n);
    string s="";
    while(n)
    {
        if(n%2==0)
        {
            n=(n-2)/2;
            s+="2";
        }
        else
        {
            n=(n-1)/2;
            s+="1";
        }
    }

    reverse(s.begin(),s.end());
    cout<<s<<endl;
    return 0;
}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值