题目意思
定义RMQ(A,l,r)为:序列A中,满足A[i] = max(A[l],A[l+1],…,A[r])的最大的i。如果对于任意(l,r)都满足RMQ(A,l,r)=RMQ(B,l,r)则为A和B是RMQ Similar。现在出A序列,B串中每个元素服从于[0,1]上相互独立的均匀分布。问满足与A是RMQ Similar的所有B序列中所有数之和的期望。例如1,3,2和4 7 2值的大小排序一样。如果数值相同算前个大于后一个。
解题思路
不难看出如果A和B是RMQ Similar,则A和B的笛卡尔树同构(反正我是没看出来)。因为笛卡尔树每棵树的根节点都是本树最大值,所以构建B的笛卡尔树和A一样的概率为每棵树的节点数分之一的乘积 ∏1n1sz[i] ∏ n 1 1 s z [ i ] ,(因为对于每棵树的最大值必须是根节点,概率全部节点分之一)。之后B每个节点满足均匀分布期望是1/2,n个节点就是n/2.总的期望就是 n2∏1nsz[i] n 2 ∏ n 1 s z [ i ]
代码部分
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int mod=1e9+7;
const int maxn=1e6+7;
const int inf=0x3f3f3f3f;
int n;
int l[maxn],r[maxn],id[maxn];
ll inv[maxn],ans;
pair<int,int>a[maxn];
int dfs(int root)///计算节点数
{
int s=1;
if(l[root])
s+=dfs(l[root]);
if(r[root])
s+=dfs(r[root]);
ans=ans*inv[s]%mod;
return s;
}
void build()///笛卡尔树模板
{
int top=0,k;
for(int i=1; i<=n; i++)
r[i]=l[i]=0;
for(int i=1; i<=n; i++)
{
k=top;
while(k>0&&a[id[k-1]]<a[i])
k--;
if(k)
r[id[k-1]]=i;
if(k<top)
l[i]=id[k];
id[k++]=i;
top=k;
}
dfs(id[0]);
}
int main()
{
int t;
inv[1]=1;
for(int i=2; i<=maxn; i++)///打逆元表
{
inv[i]=inv[mod%i]*(mod-mod/i)%mod;
}
scanf("%d",&t);
while(t--)
{
int x;
scanf("%d",&n);
for(int i=1; i<=n; i++)
{
scanf("%d",&x);
a[i]=make_pair(x,n-i);
}
ans=n*inv[2]%mod;
build();
printf("%lld\n",ans);
}
return 0;
}