HDU 6305 RMQ Similar Sequence【笛卡尔树】

题目链接

题目意思

定义RMQ(A,l,r)为:序列A中,满足A[i] = max(A[l],A[l+1],…,A[r])的最大的i。如果对于任意(l,r)都满足RMQ(A,l,r)=RMQ(B,l,r)则为A和B是RMQ Similar。现在出A序列,B串中每个元素服从于[0,1]上相互独立的均匀分布。问满足与A是RMQ Similar的所有B序列中所有数之和的期望。例如1,3,2和4 7 2值的大小排序一样。如果数值相同算前个大于后一个。

解题思路

不难看出如果A和B是RMQ Similar,则A和B的笛卡尔树同构(反正我是没看出来)。因为笛卡尔树每棵树的根节点都是本树最大值,所以构建B的笛卡尔树和A一样的概率为每棵树的节点数分之一的乘积 1n1sz[i] ∏ n 1 1 s z [ i ] ,(因为对于每棵树的最大值必须是根节点,概率全部节点分之一)。之后B每个节点满足均匀分布期望是1/2,n个节点就是n/2.总的期望就是 n21nsz[i] n 2 ∏ n 1 s z [ i ]

代码部分
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int mod=1e9+7;
const int maxn=1e6+7;
const int inf=0x3f3f3f3f;

int n;
int l[maxn],r[maxn],id[maxn];
ll inv[maxn],ans;

pair<int,int>a[maxn];
int dfs(int root)///计算节点数
{
    int s=1;
    if(l[root])
        s+=dfs(l[root]);
    if(r[root])
        s+=dfs(r[root]);
    ans=ans*inv[s]%mod;
    return s;
}
void build()///笛卡尔树模板
{
    int top=0,k;
    for(int i=1; i<=n; i++)
        r[i]=l[i]=0;
    for(int i=1; i<=n; i++)
    {
        k=top;
        while(k>0&&a[id[k-1]]<a[i])
            k--;
        if(k)
            r[id[k-1]]=i;
        if(k<top)
            l[i]=id[k];
        id[k++]=i;
        top=k;
    }
    dfs(id[0]);
}
int main()
{
    int t;
    inv[1]=1;
    for(int i=2; i<=maxn; i++)///打逆元表
    {
        inv[i]=inv[mod%i]*(mod-mod/i)%mod;
    }
    scanf("%d",&t);
    while(t--)
    {
        int x;
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
        {
            scanf("%d",&x);
            a[i]=make_pair(x,n-i);
        }
        ans=n*inv[2]%mod;
        build();
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值