小黑算法成长日记12:0-1背包问题(动态规划版)

w = [6,3,5,4,6]    # 物品价值
v = [2,2,6,5,4]    # 物品体积
def KnapSack(w,v,c):
    n = len(w)    # 物品个数
    W = w[:]    # 克隆数组,并在0位置插入0,保证元素索引从1开始
    V = v[:]
    W.insert(0,0)
    V.insert(0,0)
    arr = [[0] * (c + 1) for i in range(n + 1)]    # 动态规划数组
    print('动态规划数组如下:')
    for i in range(1,n +  1):
        for j in range(1,c + 1):
            arr[i][j] = arr[i-1][j]
            if j >= V[i] and arr[i][j] < arr[i-1][j-V[i]] + W[i]:    # 判断此物品加入背包是否对子问题最优解有影响
                arr[i][j] = arr[i-1][j-V[i]] + W[i]
            print('{:2d}'.format(arr[i][j]),end = '  ')
        print()
    rest = c
    print('最优解为:')
    for i in range(n,0,-1):
        if arr[i][rest] == arr[i-1][rest]:    # 此物品不在背包内
            continue
        else:
            print(i,end = ' ')    # 此物品在背包内,将此物品拿出
            rest -= V[i]
    print()
    return arr[n][c]
print('最优值为:',KnapSack(w,v,10))

输出:
动态规划数组如下:
0 6 6 6 6 6 6 6 6 6
0 6 6 9 9 9 9 9 9 9
0 6 6 9 9 9 9 11 11 14
0 6 6 9 9 9 10 11 13 14
0 6 6 9 9 12 12 15 15 15
最优解为:
5 2 1
最优值为: 15

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值