【动态规划】背包问题题型及方法归纳

背包问题的种类

背包问题是在规定背包容量为j的前提下,每个物品对应的体积为v[i],价值为w[i],从物品0到物品i中选择物品放入背包中,找出符合某种要求的价值

(1)背包问题种类

  • 01背包:每种物品只能选择1个。
  • 完全背包:每种物品可以选择无限个。
  • 多重背包:每种物品最多可选s[i]个。
  • 分组背包:有若干个组,每组内有若干个物品,每个物品只能选一次。

(2)递推公式

  • 01背包:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i])
  • 完全背包:dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i])
  • 多重背包:dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i], dp[i - 1][j - 2 * v[i]] + w[i] + ... + dp[i - 1][j - s[i] * v[i]] + s[i] * w[i])
  • 分组背包:dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i][k] + w[i][k], + ... + dp[i - 1][j - s[i]*v[i][k]] + s[i] * w[i][k])

(3)滚动数组遍历顺序:
遵循原则:用到上一层的信息i-1,则从大到小遍历;用到本层的信息i,则从小到大遍历。

  • 01背包:从大到小
  • 完全背包:从小到大。组合问题:先物品,再背包。排列问题:先背包,再物品。
  • 多重背包:在01背包的基础上,用到i-1层信息,从大到小,多一层for循环选物品个数
  • 分组背包:在01背包的基础上,用到i-1层信息,从大到小,多一层for循环选物品个数

(4)初始化问题:

  • 要求恰好装满:dp[i][0] = 0, dp[j] = -∞ (j ≠ 0)
  • 要求恰好装满:dp[i][0] = dp[j] = 0

可以这样理解:初始化的dp数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可以在什么也不装且价值为0的情况下被“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,应该被赋值为-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

(5)题型特点

  • 01背包:已给数组中可用元素固定且每次只能用一次,限制容量固定(可能会存在多重背包容量)。

1、01背包问题

主要分为两部分:状态表示状态计算

1. 状态表示dp[i][j]
i是物品个数,j是条件限制。状态表示一般从两个角度考虑,分别为集合属性
其中,集合是只考虑前i个物品,不超过j的选法集合。属性值的是数量最大值最小值等。当要求的数到达某一个值时,就要求j - v[i]到达那个相应的值时,会更新,这就要求设置好初始值,一般会让dp[i][0]=0dp[i][0]=1

2. 状态计算
状态计算主要是集合划分,分为 f(i-1, j) 所有不选第i个物品的方案所有选择第i个物品的方案,这种方式可保证不遗漏和不重复

(1)不超过j的条件下,对于所有不选第i个物品的方案
因为是对i从0开始按顺序遍历,因此选择的是从0-i-1中的选择方案。

(2)不超过j的条件下,所有选择第i个物品的方案
此集合包含两个部分,一个是含有第i个物品,另一个是不含第i个物品从0-i-1中选择的方案。含有第i个物品时,表示的是物品i的体积v[i]为唯一的定量不含第i个物品时,条件就变为j - v[i],减去了第i个物品的体积,在此条件下,从0-i-1中选,此时会有多种方案,为变量。按我们的目标要求,如果要找最大值,就从多种方案中的一个最大值方案,如果要找最小值,就从多种方案中的最小值方案。两个部分相加,就是我们此方案的结果

在这里插入图片描述
dp[i][j]二维数组

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1010;
int dp[N][N];

int main(){

    int n, m;
    int v[N], w[N];
    
    cin >> n >> m;
    for(int i = 1; i <= n; i++)         cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= m; j++) {
            // 当前物品重量大于背包容量时,不放该物品
            if(j < v[i])        dp[i][j] = dp[i - 1][j];
            // 当前物品重量小于等于背包容量时,在放该物品后和不放该物品之间选择一个最大价值
            else                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]);
        }
    }
    
    cout << dp[n][m] << endl;
    
    return 0;
}

dp[j]一维滚动数组
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i])改为等价式dp[j] = max(dp[j], dp[j - v[i]] + w[i]),遍历顺序改变为从大到小,通常会初始化dp[0]=0dp[0]=1

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1010;
int dp[N];

int main(){

    int n, m;
    int v[N], w[N];
    
    cin >> n >> m;
    for(int i = 1; i <= n; i++)         cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i++) {
        // 从后向前遍历,表示装入一个物品后,剩余的可装入容量达到的最大价值
        for(int j = m; j >= v[i]; j--) {
            dp[j] = max(dp[j], dp[j - v[i]] + w[i]);
        }
    }
    
    cout << dp[m] << endl;
    
    
    return 0;
}

151、【动态规划】leetcode ——2. 01背包问题(C++/Python版本):二维数组+滚动数组

拓展应用:
集合分割问题: 1、2和3。

  1. 152、【动态规划】leetcode ——416. 分割等和子集:滚动数组+二维数组(C++/Python版本):将重量之和除以2,作为背包容量,找到能让背包中可装物体体积最大的装发,让背包中装入物品的重量等于背包容量。

  2. 【动态规划】leetcode ——1049. 最后一块石头的重量 II:滚动数组(C++/Python版本):思路与上一题相同,分割成两个数量相近的集合,最后两个集合的综合相减。

  3. 154、【动态规划】leetcode ——494. 目标和:回溯法+动态规划(C++/Python版本):分割成正数集合和负数集合,背包容量为正数集合大小,找到可组成正数集合大小的组合方式。

  4. 155、【动态规划】leetcode ——474. 一和零:三维数组+二维滚动数组(C++/Python版本):字符串作为物品,m个0和n个1作为背包容量(具有多重背包)。

2、完全背包问题

与01背包的区别在于同一个物品可以有无限个,对同一个物品可选择多次。

在这里插入图片描述

状态计算时,在dp[i][j]情况下 ,划分集合时01背包只能 划分成两个集合 ,而完全背包可以划分为多个集合(第i个物品选择0个、1个、2个…一直到体积达到或超过j为止的多种方案),其中选择0个时,就相当于在0-i-1中选择的方案dp[i - 1][j]。

递推公式表达式为:
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i], dp[i - 1][j - 2*v[i]] + 2*w[i] + ... + dp[i - 1][j - n*v[i]] + n*w[i])(n*v[i]刚好小于等于j)

现在来进行简化,由上式可知,dp[i][j - v[i]] = max(dp[i - 1][j - v[i]], dp[i - 1][j - 2*v[i]] + w[i] + ... + dp[i - 1][j - n*v[i]] + (n-1)*w[i]),对该式两端加上一个w再联立第一个式子,从而得最终简化式子:

dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i])

dp[i][j]二维数组

#include <iostream>

using namespace std;

const int N = 1010;
int dp[N][N];
int v[N], w[N];
int n, m;

int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i++)      cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i++) {
        for(int j = 1;j <= m; j++) {
            if(v[i] > j)        dp[i][j] = dp[i - 1][j];
            else                dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i]);
        }
    }
    
    cout << dp[n][m] << endl;
    
    return 0;
}

d[j]一维滚动数组
滚动数组的遍历顺序按照从小到大遍历。

#include <iostream>

using namespace std;

const int N = 1010;
int dp[N];
int v[N], w[N];
int n, m;


int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i++)      cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i++) {
        for(int j = v[i]; j <= m; j++) {
            // dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i])
            dp[j] = max(dp[j], dp[j - v[i]] + w[i]);
        }
    }
    
    cout << dp[m] << endl;
    
    return 0;
    
}

156、【动态规划】AcWing ——3. 完全背包问题:二维数组+一维滚动数组(C++/Python版本)

拓展应用:
完全背包中,会牵扯两个不同的问题:组合问题和排列问题。对于组合问题,就是规定一批相同的元素,不同的排列代表同一个结果。而排列问题,就是规定一批相同的元素,不同的排列代表不同的结果。为了实现这两个问题,通常会让组合问题遍历顺序是先遍历物品,再遍历背包,这样子可以让dp只记录某一结果中的一种情形仅被记录。而排列问题遍历顺序是先遍历背包,再遍历物品,这样子可以让dp记录所有的排列出现的情况

例如,[1, 3]和[3, 1],在组合问题中只记录了[1, 3]这种情况即可。而在排列问题中,[1, 3]和[3, 1]都被记录了下来。
先遍历物品,再遍历背包,会让某一物品,在各个容量的情况下按物品放入顺序被唯一确定下来放还是不放。
先遍历背包,再遍历物品,会让在不同容量下,都将各个物品从头遍历了一遍,就会得到所有的排列情况。

无顺序要求的题目:

  1. 159、【动态规划】leetcode ——322. 零钱兑换:二维数组+一维滚动数组(C++版本):注意求最小值的初始化,由于不考虑顺序问题,因此遍历顺序都可以,dp[i][j] = min(dp[i - 1][j], dp[i][j - coins[i]])。

  2. 160、【动态规划】leetcode ——279. 完全平方数:二维数组+一维滚动数组(C++版本):方式同上,递推公式用上完全平方数形式,dp[i][j] = min(dp[i - 1][j], dp[i][j - i * i] + 1)。

(1)组合问题

数组中元素相同、顺序不同视为同一个结果,组合问题遍历顺序按先物品,再遍历背包。

  1. 158、【动态规划】leetcode ——518. 零钱兑换 II:二维数组+一维滚动数组(C++版本):零钱可以多次使用不考虑数字顺序位置关系,累加计算dp[i][j] = dp[i - 1][j] + dp[i][j - v[i]]。

  2. 191、【动态规划】AcWing ——AcWing 900. 整数划分:完全背包解法+加减1解法(C++版本):dp[i][j] = (dp[i - 1][j] + dp[i][j - i]),从1~n中选数,组合成总额和为j的方案个数。

(2)排列问题

数组中元素相同、顺序不同视为不同结果,排列问题遍历顺序按先背包,再遍历物品。最内层再加上一个从0-i再遍历探寻各种情况的for循环。

  1. 158、【动态规划】leetcode ——377. 组合总和 Ⅳ(C++版本):数字可以多次使用考虑数字顺序位置关系,一维滚动数组累加计算dp[j] += dp[j - v[i]],二维比较特别sum(dp[i][j], dp[i][j - nums[k]),内层需要从0-i再遍历一次。

  2. 145、【动态规划】leetcode ——70. 爬楼梯:暴力法+动态规划(C++版本):完全背包解法与题2相同,也是排列问题。

  3. 161、【动态规划】leetcode ——139. 单词拆分:回溯法+动态规划(C++版本):这个题比较奇特一些,当满足前面的字符可以被组成并且当前单词可以有字典中组成时,为dp[j] = true

3、多重背包问题

多重背包是对每种物品的数量进行限制,dp[i][j]的意思:在第i种物品的个数为规定s[i]个的前提下,背包容量为j,物品体积为v[i],从物品0到物品i中选择物品,可达到的最大价值。

实现方式是在01背包实现的基础上,遍历时候,在最内层设置一个for循环,寻找从一个都不选到选s[i]个第i个物品时,哪种情况取得最大价值。

dp[i][j]二维数组

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;

int n, m;
int dp[N][N];
int v[N], w[N], s[N];


int main() {
    cin >> n >> m;
    
    for(int i = 1; i <= n; i++)         cin >> v[i] >> w[i] >> s[i];
    
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= m; j++) {
            // 一个都不选一直到选s[i]个,选择一种最大价值情况
            for(int k = 1; k <= s[i] && j >= k * v[i] ; k++) {
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - k * v[i]] + k * w[i]);
            }
        }
    }
    
    cout << dp[n][m] << endl;
    
    return 0;
    
}

d[j]一维滚动数组

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;

int n, m;
int dp[N];
int v[N], w[N], s[N];


int main() {
    cin >> n >> m;
    
    for(int i = 1; i <= n; i++)         cin >> v[i] >> w[i] >> s[i];
    dp[0] = 0;
    
    for(int i = 1; i <= n; i++) {
        for(int j = m; j >= 0; j--) {
            // 一个都不选一直到选s[i]个,选择一种最大价值情况
            for(int k = 0; k <= s[i] && j >= k * v[i] ; k++) {
                dp[j] = max(dp[j], dp[j - k * v[i]] + k * w[i]);
            }
        }
    }
    
    cout << dp[m] << endl;
    
    return 0;
    
}

162、【动态规划】AcWing ——4. 多重背包问题 I(C++/Python版本)

4、分组背包

分组背包问题是在01背包的基础上,多了一个组的概念。有若干个组,每组里面有若干个物品,每个物品只能选择一次,找到在背包容量为j的前提下,从0-i组中选择物品,达到背包里价值最大。

d[j]一维滚动数组

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;
int n, m;
int v[N][N], w[N][N], s[N];
int dp[N];
                    
int main() {
    cin >> n >> m;
    for(int i = 1; i <= n; i++) {
        cin >> s[i];
        for(int j = 0; j < s[i]; j++) {
            cin >> v[i][j] >> w[i][j];
        }
    }
    
    for(int i = 1; i <= n; i++) {                   // 遍历物品
        for(int j = m; j >= 1; j--) {               // 从大到小,遍历背包(使用i-1层信息)
            for(int k = 0; k < s[i]; k++) {         // 遍历每组内的物品个数
                if(j >= v[i][k]) {
                    dp[j] = max(dp[j], dp[j - v[i][k]] + w[i][k]);
                }
            }
        }
    }
    
    cout << dp[m] << endl;
    
    
    
    return 0;
}

166、【动态规划】AcWing ——9. 分组背包问题(C++/Python版本)

<think>好的,我现在需要处理用户的问题,他们希望介绍考试题型,包括选择题、填空题、简答题和算法分析题。首先,我要确保自己正确理解每个题型的特点和常见结构,这样才能给出准确的解释。接下来,我需要考虑如何将这些内容组织成清晰的中文回答,让用户容易理解。 首先,选择题部分,要说明通常有单选和多选,考察基础知识和应用能力。可能例子比如时间复杂度或者数据结构的选择,但用户给的例子中没有具体题目,所以不需要举例,但需要解释清楚。然后填空题,通常涉及关键概念、术语或代码补全,需要准确记忆和理解。这部分可能需要代码例子,但用户可能不需要,所以保持简洁。 简答题部分,需要详细阐述概念、区别或步骤,比如哈希表的工作原理或排序算法比较。这部分要强调理解和表达能力。算法分析题则是重点,可能要求分析时间空间复杂度,或者给出算法思路,甚至编写伪代码。这部分需要逻辑性和应用能力,可能需要例子,但用户没给,所以点到为止。 接下来要检查是否有遗漏的题型,用户提到的四个类型已经齐全。需要确认每个部分的描述是否准确,比如算法分析题是否包括伪代码或实际编码,可能需要提到不同学校可能有不同侧重点。还要注意用词是否专业但易懂,比如“时间复杂度”、“空间复杂度”是否要解释,但用户是考试准备,可能已经了解这些术语,所以不需要展开。 然后要考虑结构是否清晰,分点说明每个题型,每个部分用标题和项目符号,但用户可能需要直接的回答,所以可能需要分段加粗标题,但根据用户之前的回答历史,可能使用编号和标题。同时要注意语言流畅,避免重复,确保每个题型的介绍都涵盖考察重点和示例。 最后,检查是否有拼写或语法错误,确保用词准确,比如“伪代码”而不是“伪代码”,确认每个部分的描述符合常见的考试题型结构。确保回答全面,覆盖所有四个题型,并且每个部分的信息准确有用,帮助用户明确考试准备的方向。</think>以下是针对《数据结构》或《算法设计与分析》类课程常见考试题型的介绍,供你参考: --- ### **四、考试题型说明** 1. **选择题** - **题型特点**:通常为单选或多选,考察对基础概念、算法特性、时间/空间复杂度的快速判断。 - 场景应用选择(如哈希冲突的解决方式)。 2. **填空题** - **题型特点**:直接填写关键词、代码片段或计算结果,侧重精准记忆与细节理解。 - **常见考点**: - 关键术语(如“完全二叉树”的定义); - 代码补全(如二叉树的遍历代码缺失部分); - 算法关键步骤(如Dijkstra算法的松弛操作)。 3. **简答题** - **题型特点**:需简明阐述概念、对比差异或描述步骤,注重逻辑表达与核心要点。 - **典型问题**: - 解释动态规划与分治法的异同; - 说明AVL树的平衡调整过程; - 列举图的存储方式及优缺点。 4. **算法分析题** - **题型特点**:综合难度较高,需分析算法设计思想、复杂度,或进行伪代码编写。 - **考察重点**: - 手推算法执行过程(如堆排序的建堆步骤); - 证明算法正确性(如贪心选择性质); - 设计算法解决特定问题(如用回溯法解0-1背包)。 --- ### **备考建议** - **选择题/填空题**:熟记核心概念,结合代码实例理解细节; - **简答题**:归纳高频问题,结构化记忆(如“定义+特点+举例”); - **算法分析**:动手推导经典算法(如DFS、快排),总结解题模板。 可根据具体课程大纲调整侧重点,建议结合课后习题与往年真题针对性练习。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辰阳星宇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值