【paddle】paddle.jit.save()详解 静态图模型是指一种不包含 Python 运行时的序列化模型,可以在各种平台和设备上高效地部署和运行。通过将 Python 模型保存为静态图模型,我们可以在离线环境中或者无需 Python 环境的场景下使用模型,同时还可以获得更好的性能和稳定性。其中,layer 参数表示待保存的模型,可以是一个 Layer 类型的实例或者一个包含多个 Layer 的字典;path 参数表示模型保存的路径,可以是一个字符串或者一个 pathlib.Path 对象;
【R1正则项】GAN中R1正则项详解 然后,我们对 grad_real 中的每个元素平方,并对其进行求和和平均值计算,得到最终的 R1 正则项 grad_penalty。具体来说,在 R1 正则项中,我们首先计算判别器对真实图像的预测结果,并求出其对输入图像的梯度。其中,R1 正则项是一种通过对判别器的梯度进行惩罚的方法,用于鼓励判别器将生成器生成的图像与真实图像区分开来。需要注意的是,在实际的 GAN 训练中,我们通常会对生成器的输出和真实图像分别计算 R1 正则项,并将它们加到判别器的损失函数中。
【paddle】paddle.grad()详解 然后使用 paddle.to_tensor() 函数将一个浮点数转换为 PaddlePaddle 的张量。接下来,我们计算函数在。paddle.grad 函数返回的是一个元组,包含了对输入张量求导的结果。,paddle.grad(y, x) 的返回值是一个具有。最后,我们打印结果,得到的是 [4.0],表示。,然后使用 paddle.grad() 函数计算。在这个例子中,我们首先定义了一个简单的函数。个元素的向量,其中每个元素都是。
我学习过的GAN网络汇总 FSMR: Feature Statistics Mixing Regularization for Generative Adversarial Networks作者提出两个问题,(1)、生成对抗网络中的判别器是否对图片的风格内容敏感;(2)、如果判别器对图片的风格内容敏感,降低判别器对图片的风格内容敏感度是否会提升模型的性能。作者设计了一个相对距离来量化判别器对图片的风格内容敏感的程度。并且做了相关实验。作者通过在判别器的中间层上,在同一batch上随机抽取两张图片互相作为风格和内容图片,进行风
在linux服务器上使用命令行下载百度网盘中的文件 首先确保linux服务器上安装有python和pip包管理工具1、安装bypy工具pip install bypy2、认证自己的网盘账号bypy info执行命令后会得到一个认证链接,在登陆了网盘账号的浏览器中新建标签页打开链接进行认证。3、授权成功后,我们可以在网盘中的“我的应用数据”目录下看到如下文件夹:将需要下载的文件传到这个文件夹下,然后在linux服务器中执行bypy list 可以查看该目录下的文件4、执行命令bypy downdir -v或 bypy downdir
python显示GPU信息,以及pytorch训练时,自动分配显存占用低的GPU python显示GPU信息,以及pytorch训练时,自动分配显存占用低的GPU多块显卡共同跑深度学习时,有时单个gpu显存被其他线程占用,可能会报如下错误RuntimeError: CUDA error: out of memory可以通过下面分享的代码,显示各个gpu显存占用率,已经自动选用显存占用率低的gpufrom pynvml import *def show_gpu(simlpe=True): # 初始化 nvmlInit() # 获取GPU个数 d
python的一些代码小技巧 1.定义一个很大的数a = 1000000000print(a) # 1000000000b = 10 * 10000 * 10000print(b) # 1000000000c = 10_0000_0000print(c) # 10000000002.交换两个变量的值a = 10b = 20c = aa = bb = cprint("a={}, b={}".format(a, b)) # a=20, b=10a = 30b = 40b, a = a, bprin
设计模式大作业:委派模式----不属于23种常用的设计模式 委派模式 引言 委派模式是一种在java中广泛应用的设计模式,但是其并不属于GOF中23种常用的设计模式。委派模式和曾经学过的代理模式很像,可以看做是代理模式的一种特殊形式,与此同时委派模式和策略模式也很相似。一般设计模式都是几种模式混合使用来解决一个问题,很少的情况会单独使用。1 委派模式动机与定义 委派模式跟代理模式和策略模式很像,可以将其看做是代理模式和策略模式的组合。代理模式是用一个类来代替另一个类来执行某些操作;策略模式是根据条件的不同选择不同的策略来完成某项任务。领导需
学科前沿大作业:三维点云深度学习 三维点云深度学习 摘 要:随着3D摄像机的不断发展,以及计算机视觉、自动驾驶等技术的日趋完善,对三维数据的应用越来越迫切。近些年深度学习蓬勃发展,基于3D点云的研究越来越多。点云作为一种能够丰富地表达出三维物体的几何空间信息,拥有巨大的研究价值。本文将介绍基于三维点云的物体识别,语义分割、实例分割的深度学习方法,以及当前所面临的问题和未来可能的发展方向。 关键词:点云;深度学习;计算机视觉 三维点云作为一种可以准确描述复杂物体的位置、形状、大小的数据,基于其存储简单,描述能力强,处
学科前沿大作业:区块链技术的相关应用 区块链技术的相关应用 摘 要:目前,人们已经在安全的数据隐私保护和可靠的信息追踪方面做了很多努力,但是传统的解决方案仍然存在着信息丢失、隐私泄露等问题,区块链技术的出现使解决这些问题拥有可能。区块链可以通过建立一个集体维护的、防篡改的公共账本来记录历史数据,确保分布式网络中存储数据的安全性和可靠性。它实现了一种去中心化的网络结构,为信息跟踪和隐私保护等领域带来了新的解决方案。近年来,区块链技术逐渐受到各行各业的密切关注,本文总结了现有的基于区块链的系统和应用。可以预见区块链可能为未来各个行业的发展