Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations论文详记


原文链接https://ieeexplore.ieee.org/abstract/document/8638330.

一、论文简述

提取眼睛、牙齿以及脸部轮廓等位置的特征来检测DeepFake视频,属于基于帧内图像伪影的检测方法,使用Logistic回归或浅层全连接网络分类,属于浅层分类器方法

二、论文内容

作者等人认为,虽然当前的计算机视觉与计算机图形学的工作(指GANs、VAE等模型)在相对自由的场景中有令人满意的效果,但将这些技术应用于人脸操纵上面时,大部分技术会凸显出一定的局限性,这种局限性会在生成内容中产生特征性的伪影。作者等人选择使用眼睛、牙齿以及面部轮廓上的视觉特征,并证明在开发出足够通用的统计视频取证方法之前,基于这些视觉特征的检测方法,是一种易于实现、可行的检测方法。

A、篡改伪影

①全局一致性

作者认为,在利用GANs生成新面孔时,支持图像插值的数据点是随机生成的,不一定具有语义上的意义,虽然生成的结果通常可以描述为不同面孔的和谐混合,但它们似乎缺乏全局一致性,可以观察到许多生成的样本左右眼睛颜色的差异很大,如下图所示。现实中,不同颜色虹膜的现象被称为异瞳,但这对人类来说是罕见的。这种伪影在生成的人脸中的严重程度各不相同,且并非存在于所有的样本中。
生成图片中的异瞳现象

②光照估计

为了重构具有不同属性的人脸,必须将入射光从原始图像转移到伪造图像中。对于Face2Face等方法,估算几何体、估算照明和渲染的过程是显式建模的,而在基于深度学习的方法中,这种模型通常是从数据中隐式学习的,因此对入射光照的错误或不精确的估计将导致相关伪影出现。漫反射通常可以令人信服地重建,特别基于深度学习技术生成的篡改,我们无法发现其相关的伪影。在Face2Face操作的某些情况下(为啥目测DeepFake生成的好像也有?),可以发现着色瑕疵,这些伪影通常会出现在鼻子的某个区域,在该区域的一侧阴影被渲染得太暗,作者认为这些伪影可能是由Face2Face的有限光照模型引起的,因为这种模型没有考虑互反射的影响。下图显示与原始图像进行比较的该伪影的示例。
鼻子区域的渲染伪影
面部的镜面反射在眼睛中最为明显,许多由DeepFake技术生成的样本显示出不可信的镜面反射,具体表现为:眼睛中的反射要么消失,要么简化为一个白色斑点。这种伪影会导致眼睛看起来不具有神采,下图中示出了与未篡改的图片进行比较的示例。
DeepFake生成图片眼睛无神采

③几何估计

显然的是,我们必须估计面部几何结构才能完成面部的篡改。如前所述,与光照的情况类似,Face2Face通过将可变形模型拟合到图像中,从而显式地建模几何估计,基于深度学习的技术隐式地从数据中学习底层模型。对于Face2Face数据,我们可以发现由底层几何体的不精确估计引起的伪影,在替换过程中,原始图像上覆盖有一个mask。如果几何估计不完美,则会出现沿mask边界的伪影。这种伪影通常在鼻子区域、脸部遮挡边界周围和眉毛处相对明显。此外,如果部分遮挡的面部的部分(例如头发)没有正确建模,将可能导致出现一些“孔洞”(下图右),上述伪影如下图所示。
由底层几何体的不精确估计引起的伪影
另外,在目前社交媒体上流传的假样本上,我们经常可以发现一些几何体的缺失。具体来说,牙齿通常是没有建模模型的,这一点在很多视频中都很明显,在这些视频中,牙齿显示为单个白色斑点,而不是单个牙齿,如下图所示。
几何模型缺失带来的伪影

B、基于视觉伪影的分类

在实际检测中,伪影的视觉外观并不总是像示例种那样明显,然而,我们表明相对简单的特征可以用来建模这些观测,这些特征可用于检测生成或篡改的人脸。具体来说,我们提出一个算法来检测:1、完全生成的人脸(也就是Entire Face Synthesis,直接用GAN或者其他生成模型生成的人脸,没有明确的目标);2、目前在社交媒体上流传的DeepFake;3、由Face2Face篡改的图像。

①、完全生成脸部的检测

作者利用眼睛颜色的差异来检测完全生成的人脸。为了提取每只眼睛的颜色特征,作者为每个输入图像检测面部LandMark,然后将图像裁剪到面部区域并重塑图像为768×768像素(没看源码,原文是 the images are cropped to the face region and resized to 768 pixels in height,我个人理解为resize成768*768),使得所有待处理的样本具有相同的分辨率。作者通过检测虹膜位置的像素来计算眼睛的颜色特征。作者考虑将虹膜检测为眼睛LandMark内的一个圆,由于虹膜与巩膜的对比度通常比较高,因此利用Canny算子做边缘检测并应用Hough圆变换,通过对可能属于瞳孔的暗像素和可能来自反射或不准确分割的亮像素进行阈值化,进一步细化分割。下图显示了检测pipeline中主要步骤的分割结果。
虹膜检测与分割
作者还提出两个一致性检查来帮助识别虹膜检测中的失败情况:1、对于左眼和右眼,虹膜中心和眼睛中心的距离(依据LandMark计算)应该相似;2、两个虹膜都有相似的半径。为了提高分割的可信度,丢弃违反这些假设的样本。

作者定义了多种特征来描述左右眼颜色的差异。首先,将颜色变换为HSV颜色空间,并对左右眼的分割像素进行平均,左眼 l H l_H lH l S l_S lS l V l_V lV和右眼 r H r_H rH r S r_S

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Bert是一种在自然语言处理中被广泛使用的模型,其在各种任务中表现出了出色的性能。然而,对于方面级情感分析,Bert并不直接适用。因此,需要对Bert进行利用,并通过修改和扩展来适应这一任务。 端到端(end-to-end)的方面级情感分析是指通过一个模型直接从文本中提取方面和情感信息。为了利用Bert进行端到端的方面级情感分析,首先需要对数据进行预处理,并将其转换成Bert模型所接受的输入格式。这包括将文本分段、添加特殊标以及填充序列等操作。 在Bert模型的基础上,需要添加相关的层来实现方面级情感分析。一种常见的方法是利用注意力机制来捕获方面词与其他词之间的关系。通过计算不同词之间的注意力权重,可以将方面词的相关信息传递给其他词,从而更好地理解整个文本。另外,也可以添加一些分类层来预测每个方面的情感。 为了更好地利用Bert,还可以使用领域特定的语料库来进行预训练。通过在大规模的语料库上进行预训练,模型可以更好地理解特定领域的文本,并提升方面级情感分析的性能。 此外,还可以通过调整Bert模型的超参数来进一步改善性能。例如,可以调整学习率、批大小和训练周期等超参数,以获得更好的结果。 总之,“exploiting bert for end-to-end aspect-based sentiment analysis”意味着通过对Bert进行修改和扩展,将其应用于端到端的方面级情感分析任务中,以提升模型的性能和效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值