logistic回归详解

本文探讨了梯度消失问题、logistic回归中的sigmoid函数、MSE与crossentropy损失函数在分类问题中的应用,以及softmax解决多分类问题的方法。重点介绍了PyTorch中的inplace操作,feature缩放(如归一化和批归一化)在图像处理中的实践,特别是针对ImageNet数据集的标准化方法。
摘要由CSDN通过智能技术生成

为什么不直接统计标签数和预测结果数,计算精度?

因为

  • 存在梯度为0的情况
  • 梯度不连续

为什么叫logistic回归

logistic是因为加了一个sigmoid函数,将输出预测值映射到【0,1】
有时候使用MSE损失函数,拟合
有时候使用cross entropy==》 分类问题

softmax解决多分类问题,让大的概率值更大

交叉熵损失详解 cross entropy

在这里插入图片描述
kl散度,两个分布重合的话,kl散度等于0,因为他们很整齐

在这里插入图片描述

熵:不确定性,惊喜的衡量度,稳定度

二分类的公式推导

在这里插入图片描述
cross entropy 越小越好,优化起来速度更快,在pytorch中,把softmax和log打包到一起了

pytorch中的inplace会改变输入x的值

feature缩放

有两种方式

  1. 图像数据增强
# 对3通道进行归一化处理   imagenet数据集上的
transforms.Normalize(mean=[0.485,0.456,0.406],
                     std=[0.229,0.224,0.225])
 #  批归一化 最后生成通道数      28*28
x = torch.rand(100,16,784)
layer = nn.BatchNorm1d(16)
out = layer(x)

#[16]   均值
print(layer.running_mean,layer.running_mean.size())

# 方差
print(layer.running_var)
  1. 批归一化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值