线性回归及logistic回归详解


(主要参考 吴恩达机器学习

线性回归

线性回归是机器学习中比较基本的一个算法。其基本思想大致可以理解为给定一个数据集,通过线性回归得到一条曲线,尽可能地去拟合这个数据集。如下图所示:
红色点集表示数据集,蓝色直线为拟合结果那么,如何得到这样一条拟合曲线呢?一个自然而然的想法是建立一个输入 x x x到输出 y ^ \hat{y} y^的拟合函数,使得这个函数的输出 y ^ \hat{y} y^能够尽可能地接近真实值 y y y
通常,这个拟合函数可以被定义为:
h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 + ⋯ + θ n x n = θ T x h_{\theta}\left(x\right)=\theta_0+\theta_1x_1+\theta_2x_2+\dots+\theta_nx_n=\boldsymbol{\theta}^T\boldsymbol{x} hθ(x)=θ0+θ1x1+θ2x2++θnxn=θTx
其中, θ = [ θ 0 , θ 1 , … , θ n ] T \boldsymbol{\theta}=\left[\theta_0,\theta_1,\dots,\theta_n\right]^T θ=[θ0,θ1,,θn]T,表示参数的集合(线性回归的目的就是找到一组合适的参数,去拟合给定的数据集), x = [ x 0 , x 1 , … , x n ] T \boldsymbol{x}=\left[x_0,x_1,\dots,x_n\right]^T x=[x0,x1,,xn]T表示数据的特征,并且通常 x 0 = 1 x_0=1 x0=1。例如,预测房价随房子面积变化的趋势,房子的面积,楼层,房间数等都可作为数据的特征,分别用 x 1 , x 2 , x 3 , … x_1,x_2,x_3,\dots x1x2x3表示。
因此,我们的任务就是去寻找这一组合适的 θ \boldsymbol{\theta} θ去构建上述拟合函数。这样我们就可以引入机器学习中另外一个常见的名词:代价函数。其主要作用就是衡量拟合函数的输出 y ^ \hat{y} y^和真实值 y y y之间的偏差(值越小,说明越接近真实值)。在线性回归中,代价函数的定义为:
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J\left(\boldsymbol{\theta}\right)=\frac{1}{2m}\sum_{i=1}^m\left(h_\boldsymbol{\theta}\left(x^{\left(i\right)}\right)-y^{\left(i\right)}\right)^2 J(θ)=2m1i=1m(hθ(x(i))y(i))2
其中, m m m表示训练集的数量, x ( i ) x^{\left(i\right)} x(i)的上标仅仅表示第 i i i个训练数据。为了找到 θ \boldsymbol{\theta} θ,目标就转换为了 m i n θ J ( θ ) \mathop{min}\limits_{\theta}J\left(\theta\right) θminJ(θ)
下一步就是如何求 m i n θ J ( θ ) \mathop{min}\limits_{\theta}J\left(\boldsymbol{\theta}\right) θminJ(θ)。我们最熟悉的做法就是梯度下降了,具体做法为:
r e p e a t   u n t i l   c o n v e r g e n c e   θ j ≔ θ j − α ∂ ∂ θ j J ( θ ) repeat\ until\ convergence\ \theta_j\coloneqq\theta_j-\alpha\frac{\partial}{\partial\theta_j}J\left(\boldsymbol{\theta}\right) repeat until convergence θj:=θjαθjJ(θ)
针对每一个具体的 θ j \theta_j θj,其具体的更新公式为:
θ 0 ≔ θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x 0 ( i ) θ 1 ≔ θ 1 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x 1 ( i ) θ 2 ≔ θ 2 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x 2 ( i ) … θ n ≔ θ n − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x n ( i ) \theta_0\coloneqq\theta_0-\alpha\frac{1}{m}\sum_{i=1}^m\left(h_\theta\left(x^{\left(i\right)}\right)-y^{\left(i\right)}\right)\cdot x_0^{\left(i\right)}\\ \theta_1\coloneqq\theta_1-\alpha\frac{1}{m}\sum_{i=1}^m\left(h_\theta\left(x^{\left(i\right)}\right)-y^{\left(i\right)}\right)\cdot x_1^{\left(i\right)}\\ \theta_2\coloneqq\theta_2-\alpha\frac{1}{m}\sum_{i=1}^m\left(h_\theta\left(x^{\left(i\right)}\right)-y^{\left(i\right)}\right)\cdot x_2^{\left(i\right)}\\\dots\\ \theta_n\coloneqq\theta_n-\alpha\frac{1}{m}\sum_{i=1}^m\left(h_\theta\left(x^{\left(i\right)}\right)-y^{\left(i\right)}\right)\cdot x_n^{\left(i\right)} θ0:=θ0αm1i=1m(hθ(x(i))y(i))x0(i)θ1:=θ1αm1i=1m(hθ(x(i))y(i))x1(i)θ2:=θ2αm1i=1m(hθ(x(i))y(i))x2(i)θn:=θnαm1i=1m(hθ(x(i))y(i))xn(i)
重复上述过程,直到算法收敛。最终,我们就得到了一组合适的参数 θ ∗ = [ θ 0 ∗ , θ 1 ∗ , … , θ n ∗ ] T \boldsymbol{\theta^*}=\left[\theta_0^*,\theta_1^*,\dots,\theta_n^*\right]^T θ=[θ0,θ1,,θn]T
以上就是线性回归的全部流程,下面介绍logistic回归(也叫逻辑回归)。

logistic回归

在上面的线性回归中要预测的变量 y ^ \hat{y} y^是一个连续值,而logistic回归主要用于分类问题,要预测的变量 y ^ \hat{y} y^是一个离散值。通常其取值是一个有限离散值的集合,即 y ∈ { 0 , 1 , 2 , …   } y\in\{0,1,2,\dots\} y{0,1,2,},最常见的二元分类中 y ∈ { 0 , 1 } y\in\{0,1\} y{0,1}。logistic的原理和线性回归大致相同。具体区别主要在于拟合函数 h θ ( x ) h_{\boldsymbol\theta}\left(x\right) hθ(x)和代价函数 J ( θ ) J\left(\boldsymbol\theta\right) J(θ)。在线性回归中,我们已经知道 h θ ( x ) = θ T x h_{\boldsymbol\theta}\left(x\right)=\boldsymbol\theta^T\boldsymbol{x} hθ(x)=θTx,而在logistic回归中,拟合函数为:
h θ ( x ) = g ( θ T x ) 其 中 , g ( z ) = 1 1 + e − 1 h_{\theta}\left(x\right)=g\left(\boldsymbol\theta^T\boldsymbol{x}\right)\\[3pt]其中,g\left(z\right)=\frac{1}{1+e^{-1}} hθ(x)=g(θTx)g(z)=1+e11
有了拟合函数,按照线性回归的流程,下面就是代价函数了。如果logistic回归仍然采用和线性回归一样的代价函数,按照吴恩达老师在视频中的说法,由于拟合函数 h θ ( x ) h_{\theta}\left(x\right) hθ(x)的改变,会使最终的代价函数 J ( θ ) J\left(\boldsymbol\theta\right) J(θ)变为非凸的函数,从而无法很好地利用梯度下降法去求解。为此,在logistic回归中,代价函数变成了下列形式:
J ( θ ) = { − log ⁡ ( h θ ( x ) ) ,   y = 1 − log ⁡ ( 1 − h θ ( x ) ) ,   y = 0 J\left(\boldsymbol\theta\right)=\left\{ \begin{aligned} -\log\left(h_{\boldsymbol\theta}\left(x\right)\right),\ y=1 \\ -\log\left(1-h_{\boldsymbol\theta}\left(x\right)\right),\ y=0 \end{aligned} \right. J(θ)={log(hθ(x)), y=1log(1hθ(x)), y=0
为了简化公式,上述分段函数可以进一步写成:
J ( θ ) = − y log ⁡ ( h θ ( x ) ) − ( 1 − y ) log ⁡ ( 1 − h θ ( x ) ) J\left(\boldsymbol\theta\right)=-y\log\left(h_{\boldsymbol\theta}\left(x\right)\right)-\left(1-y\right)\log\left(1-h_{\boldsymbol\theta}\left(x\right)\right) J(θ)=ylog(hθ(x))(1y)log(1hθ(x))
于是,针对m个训练集,最终的代价函数为:
J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) log ⁡ h θ ( x ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J\left(\boldsymbol\theta\right)=-\frac{1}{m}\sum_{i=1}^m\left[y^{\left(i\right)}\log{h_{\boldsymbol\theta}\left(x^{\left(i\right)}\right)}+\left(1-y^{\left(i\right)}\right)\log\left(1-h_{\boldsymbol\theta}\left(x^{\left(i\right)}\right)\right)\right] J(θ)=m1i=1m[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]
接下来的流程就和线性回归一致了,即利用梯度下降,通过多次迭代,最终得到一组合适的参数 θ = [ θ 0 , θ 1 , … , θ n ] T \boldsymbol{\theta}=\left[\theta_0,\theta_1,\dots,\theta_n\right]^T θ=[θ0,θ1,,θn]T
r e p e a t   u n t i l   c o n v e r g e n c e   θ j ≔ θ j − α ∂ ∂ θ j J ( θ ) repeat\ until\ convergence\ \theta_j\coloneqq\theta_j-\alpha\frac{\partial}{\partial\theta_j}J\left(\boldsymbol{\theta}\right) repeat until convergence θj:=θjαθjJ(θ)
针对每一个具体的 θ j \theta_j θj,其具体的更新公式为:
θ 0 ≔ θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x 0 ( i ) θ 1 ≔ θ 1 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x 1 ( i ) θ 2 ≔ θ 2 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x 2 ( i ) … θ n ≔ θ n − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x n ( i ) \theta_0\coloneqq\theta_0-\alpha\frac{1}{m}\sum_{i=1}^m\left(h_\theta\left(x^{\left(i\right)}\right)-y^{\left(i\right)}\right)\cdot x_0^{\left(i\right)} \\ \theta_1\coloneqq\theta_1-\alpha\frac{1}{m}\sum_{i=1}^m\left(h_\theta\left(x^{\left(i\right)}\right)-y^{\left(i\right)}\right)\cdot x_1^{\left(i\right)} \\ \theta_2\coloneqq\theta_2-\alpha\frac{1}{m}\sum_{i=1}^m\left(h_\theta\left(x^{\left(i\right)}\right)-y^{\left(i\right)}\right)\cdot x_2^{\left(i\right)}\\\dots\\ \theta_n\coloneqq\theta_n-\alpha\frac{1}{m}\sum_{i=1}^m\left(h_\theta\left(x^{\left(i\right)}\right)-y^{\left(i\right)}\right)\cdot x_n^{\left(i\right)} θ0:=θ0αm1i=1m(hθ(x(i))y(i))x0(i)θ1:=θ1αm1i=1m(hθ(x(i))y(i))x1(i)θ2:=θ2αm1i=1m(hθ(x(i))y(i))x2(i)θn:=θnαm1i=1m(hθ(x(i))y(i))xn(i)
尽管参数的更新公式和线性回归的更新公式一致,但拟合函数 h θ ( x ) h_{\boldsymbol\theta}\left(x\right) hθ(x)的形式已经发生改变。
下面给出logistic回归中梯度更新公式的具体推导流程:
为了便于推导,我们只考虑含有两个参数的情况(更多参数情况可以类推),即 θ = [ θ 0 , θ 1 ] T \boldsymbol\theta=[\theta_0,\theta_1]^T θ=[θ0,θ1]T。此时,
h θ ( x ) = 1 1 + e − ( θ 0 + θ 1 x 1 ) h_{\boldsymbol\theta}\left(x\right)=\frac{1}{1+e^{-\left(\theta_0+\theta_1x_1\right)}} hθ(x)=1+e(θ0+θ1x1)1
J ( θ ) = − y log ⁡ ( 1 1 + e − ( θ 0 + θ 1 x 1 ) ) − ( 1 − y ) log ⁡ ( 1 − 1 1 + e − ( θ 0 + θ 1 x 1 ) ) J\left(\boldsymbol\theta\right)=-y\log\left(\frac{1}{1+e^{-\left(\theta_0+\theta_1x_1\right)}}\right)-\left(1-y\right)\log\left(1-\frac{1}{1+e^{-\left(\theta_0+\theta_1x_1\right)}}\right) J(θ)=ylog(1+e(θ0+θ1x1)1)(1y)log(11+e(θ0+θ1x1)1)
下面对 θ 1 \theta_1 θ1进行求偏导(以自然对数 e e e作为底为例,以2为底也一样,只是多了一个常数):
∂ ∂ θ 1 J ( θ ) = − y [ 1 + e − ( θ 0 + θ 1 x 1 ) ] ⋅ x 1 e − ( θ 0 + θ 1 x 1 ) [ 1 + e − ( θ 0 + θ 1 x 1 ) ] 2 − 1 + e − ( θ 0 + θ 1 x 1 ) e − ( θ 0 + θ 1 x 1 ) ⋅ − x 1 e − ( θ 0 + θ 1 x 1 ) ( 1 + e − ( θ 0 + θ 1 x 1 ) ) + x 1 e − 2 ( θ 0 + θ 1 x 1 ) [ 1 + e − ( θ 0 + θ 1 x 1 ) ] 2 + y 1 + e − ( θ 0 + θ 1 x 1 ) e − ( θ 0 + θ 1 x 1 ) ⋅ − x 1 e − ( θ 0 + θ 1 x 1 ) ( 1 + e − ( θ 0 + θ 1 x 1 ) ) + x 1 e − 2 ( θ 0 + θ 1 x 1 ) [ 1 + e − ( θ 0 + θ 1 x 1 ) ] 2 = − y ⋅ x 1 e − ( θ 0 + θ 1 x 1 ) 1 + e − ( θ 0 + θ 1 x 1 ) + x 1 1 + e − ( θ 0 + θ 1 x 1 ) − y x 1 1 + e − ( θ 0 + θ 1 x 1 ) = x 1 ( 1 1 + e − ( θ 0 + θ 1 x 1 ) − y ) = ( h θ ( x ) − y ) x 1 \frac{\partial}{\partial\theta_1}J\left(\boldsymbol{\theta}\right)=-y\left[1+e^{-\left(\theta_0+\theta_1x_1\right)}\right] \cdot \frac{x_1e^{-\left(\theta_0+\theta_1x_1\right)}}{\left[1+e^{-\left(\theta_0+\theta_1x_1\right)}\right]^2}-\\[4pt] \frac{1+e^{-\left(\theta_0+\theta_1x_1\right)}}{e^{-\left(\theta_0+\theta_1x_1\right)}} \cdot \frac{-x_1e^{-\left(\theta_0+\theta_1x_1\right)} \left( 1+e^{-\left(\theta_0+\theta_1x_1\right)} \right)+x_1e^{-2\left(\theta_0+\theta_1x_1\right)}}{\left[1+e^{-\left(\theta_0+\theta_1x_1\right)}\right]^2}+ \\[4pt] y \frac{1+e^{-\left(\theta_0+\theta_1x_1\right)}}{e^{-\left(\theta_0+\theta_1x_1\right)}} \cdot \frac{-x_1e^{-\left(\theta_0+\theta_1x_1\right)} \left( 1+e^{-\left(\theta_0+\theta_1x_1\right)} \right)+x_1e^{-2\left(\theta_0+\theta_1x_1\right)}}{\left[1+e^{-\left(\theta_0+\theta_1x_1\right)}\right]^2} \\[4pt] = -y \cdot \frac{x_1e^{-\left(\theta_0+\theta_1x_1\right)}}{1+e^{-\left(\theta_0+\theta_1x_1\right)}} + \frac{x_1}{1+e^{-\left(\theta_0+\theta_1x_1\right)}} - \frac{yx_1}{1+e^{-\left(\theta_0+\theta_1x_1\right)}} \\[4pt] =x_1\left( \frac{1}{1+e^{-\left(\theta_0+\theta_1x_1\right)}} -y \right)\\[4pt] = \left( h_{\theta}\left( x\right) -y \right)x_1 θ1J(θ)=y[1+e(θ0+θ1x1)][1+e(θ0+θ1x1)]2x1e(θ0+θ1x1)e(θ0+θ1x1)1+e(θ0+θ1x1)[1+e(θ0+θ1x1)]2x1e(θ0+θ1x1)(1+e(θ0+θ1x1))+x1e2(θ0+θ1x1)+ye(θ0+θ1x1)1+e(θ0+θ1x1)[1+e(θ0+θ1x1)]2x1e(θ0+θ1x1)(1+e(θ0+θ1x1))+x1e2(θ0+θ1x1)=y1+e(θ0+θ1x1)x1e(θ0+θ1x1)+1+e(θ0+θ1x1)x11+e(θ0+θ1x1)yx1=x1(1+e(θ0+θ1x1)1y)=(hθ(x)y)x1
考虑m个训练集:
∂ ∂ θ 1 J ( θ ) = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x 1 ( i ) \frac{\partial}{\partial\theta_1}J\left(\boldsymbol{\theta}\right)=\frac{1}{m}\sum_{i=1}^m\left(h_\theta\left(x^{\left(i\right)}\right)-y^{\left(i\right)}\right)\cdot x_1^{\left(i\right)} θ1J(θ)=m1i=1m(hθ(x(i))y(i))x1(i)
其余参数推导流程一致。
除了利用梯度下降进行参数优化外,还有一些高级的优化方法,例如Conjugate gradient,BFGS,L-BFGS。感兴趣的可以自行学习。
以上就是线性回归和logistic回归的全部内容,欢迎交流~

  • 0
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农夫三犭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值