算法基础之欧拉函数、快速幂、扩展欧几里得算法和中国剩余定理

1、欧拉函数

1.1、欧拉函数

在这里插入图片描述
在这里插入图片描述

#include <iostream>

using namespace std;


int phi(int x)
{
    int res = x;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
       		// 先除 再乘
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
        //先除 再乘
    if (x > 1) res = res / x * (x - 1);

    return res;
}


int main()
{
    int n;
    cin >> n;
    while (n -- )
    {
        int x;
        cin >> x;
        cout << phi(x) << endl;
    }

    return 0;
}

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.2、筛法求欧拉函数

在这里插入图片描述

#include <iostream>

using namespace std;

typedef long long LL;

const int N = 1000010;


int primes[N], cnt;
int euler[N];
bool st[N];


void get_eulers(int n)
{
    euler[1] = 1;
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i])
        {
            primes[cnt ++ ] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            int t = primes[j] * i;
            st[t] = true;
            if (i % primes[j] == 0)
            {
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}


int main()
{
    int n;
    cin >> n;

    get_eulers(n);

    LL res = 0;
    for (int i = 1; i <= n; i ++ ) res += euler[i];

    cout << res << endl;

    return 0;
}

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、快速幂

2.1、快速幂

在这里插入图片描述

#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;


LL qmi(int a, int b, int p)
{
    LL res = 1 % p;
    while (b)
    {
        if (b & 1) res = res * a % p;
        a = a * (LL)a % p;
        b >>= 1;
    }
    return res;
}


int main()
{
    int n;
    scanf("%d", &n);
    while (n -- )
    {
        int a, b, p;
        scanf("%d%d%d", &a, &b, &p);
        printf("%lld\n", qmi(a, b, p));
    }

    return 0;
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
假如一开始,二进制第一位是1。
在这里插入图片描述
在这里插入图片描述

2.2、快速幂求逆元

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;


LL qmi(int a, int b, int p)
{
    LL res = 1;
    while (b)
    {
        if (b & 1) res = res * a % p;
        a = a * (LL)a % p;
        b >>= 1;
    }
    return res;
}


int main()
{
    int n;
    scanf("%d", &n);
    while (n -- )
    {
        int a, p;
        scanf("%d%d", &a, &p);
        if (a % p == 0) puts("impossible");
        else printf("%lld\n", qmi(a, p - 2, p));
    }

    return 0;
}

3、扩展欧几里得算法

3.1、扩展欧几里得算法

在这里插入图片描述

#include <iostream>
#include <algorithm>

using namespace std;

int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

int main()
{
    int n;
    scanf("%d", &n);

    while (n -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        int x, y;
        exgcd(a, b, x, y);
        printf("%d %d\n", x, y);
    }

    return 0;
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3.2、线性同余方程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;


int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}


int main()
{
    int n;
    scanf("%d", &n);
    while (n -- )
    {
        int a, b, m;
        scanf("%d%d%d", &a, &b, &m);

        int x, y;
        int d = exgcd(a, m, x, y);
        if (b % d) puts("impossible");
        else printf("%d\n", (LL)b / d * x % m);
    }

    return 0;
}

4、中国剩余定理

4.1、表达整数的奇怪方式

在这里插入图片描述

#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;


LL exgcd(LL a, LL b, LL &x, LL &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }

    LL d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}


int main()
{
    int n;
    cin >> n;

    LL x = 0, m1, a1;
    cin >> a1 >> m1;
    for (int i = 0; i < n - 1; i ++ )
    {
        LL a2, m2;
        cin >> a2 >> m2;
        LL k1, k2;
        LL d = exgcd(a1, a2, k1, k2);
        //判断欧几里得后是否有解,无解执行
        if ((m2 - m1) % d)
        {
            x = -1;
            break;
        }
		//欧几里得求的是d k1与(m2-m1)关联,
		//必须扩大
        k1 *= (m2 - m1) / d;
        
         //k变成方程的最小正整数解
        k1 = (k1 % (a2/d) + a2/d) % (a2/d);
        
        //x0
        m1 = k1 * a1 + m1;
        //最小公倍数
        a1 = abs(a1 / d * a2);
    }

    if (x != -1) x = (m1 % a1 + a1) % a1;

    cout << x << endl;

    return 0;
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
x所表示的公式就是中国剩余定理 第一次讲解
第二次讲解中 m与a颠倒过来
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
题目需要变形,无法使用中国剩余定理,需要改变。

在这里插入图片描述
解k1,k2
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值