基础30讲 第18讲 三重积分、曲线曲面积分

本文详细探讨了多元积分,包括三重积分的概念、性质、对称性及其计算方法,如直角坐标、柱面和球面坐标系下的积分。同时,介绍了第一型曲线积分和曲面积分的定义、性质、对称性和计算技巧,涉及平面及空间情形。此外,还阐述了这些积分在几何量、重心、转动惯量和引力等实际问题中的应用,以及第二型曲线和曲面积分的相关概念和性质,如格林公式和斯托克公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

综述 区别于数一数二 以计算为主

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

1、三重积分

1.1 三重积分的概念性质与对称性

1.1.1 概念

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.1.2 性质

1.1.3 对称性

在这里插入图片描述

普通对称性

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

轮换对称性

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.2 三重积分的计算 (化为定积分+二重积分)

1.2.1基础方法

在这里插入图片描述

直角坐标系 (投影穿线法)

在这里插入图片描述

先一后二法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

先二后一法(定限截面法)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

柱面坐标系(投影是部分圆,类似二重积分的极坐标系积法)

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值