综述 区别于数一数二 以计算为主












1、三重积分
1.1 三重积分的概念性质与对称性
1.1.1 概念





1.1.2 性质
1.1.3 对称性

普通对称性







轮换对称性







1.2 三重积分的计算 (化为定积分+二重积分)
1.2.1基础方法

直角坐标系 (投影穿线法)

先一后二法














先二后一法(定限截面法)













柱面坐标系(投影是部分圆,类似二重积分的极坐标系积法)



本文详细探讨了多元积分,包括三重积分的概念、性质、对称性及其计算方法,如直角坐标、柱面和球面坐标系下的积分。同时,介绍了第一型曲线积分和曲面积分的定义、性质、对称性和计算技巧,涉及平面及空间情形。此外,还阐述了这些积分在几何量、重心、转动惯量和引力等实际问题中的应用,以及第二型曲线和曲面积分的相关概念和性质,如格林公式和斯托克公式。
最低0.47元/天 解锁文章
8448

被折叠的 条评论
为什么被折叠?



