【ML算法】随机森林算法的总结(二)之集成学习

在这里插入图片描述

文章主要从以下几个方面进行介绍随机森林算法:
决策树算法。
集成学习思想。
随机森林算法的形成

一、决策树算法
请自行查看下面文章
【RL算法】随机森林算法的总结(一)

二、集成学习思想
集成学习(ensemble)思想是为了解决单个模型或者某一组参数的模型所固有的缺陷,从而整合起更多的模型,取长补短,避免局限性。随机森林就是集成学习思想下的产物,将许多棵决策树整合成森林,并合起来用来预测最终结果。

与单一的学习模型相比,集成学习模型的优势在于能够把多个单一学习模型有机地结合起来,获得一个统一的集成学习模型,从而获得更准确、稳定和强壮的结果。近年来,各种各样的集成学习模型相继被提出,并应用于各种类型的数据集中。
集成学习能够把多个单一学习模型所获得的多个预测结果进行有机地组合,从而获得更加准确、稳定和强壮的最终结果。集成学习的原理来源于PAC学习模型(Probably Approximately Correct learning)。Kearns和Valiant最早探讨了弱学习算法与强学习算法的等价性问题,即提出了是否可以将弱学习算法提升成强学习算法的问题。如果两者等价,那么在学习概念时,只要找到一个比随机猜测略好的弱学习算法,就可以将其提升为强学习算法,而不必直接去找通常情况下很难获得的强学习算法。
近年来,研究人员在集成学习方面,特别是分类集成方面进行了大量的探索和创新。大部分的集成学习模型都可以归为三大类:**
分类集成学习模型
半监督集成学习模型
非监督集成学习模型。
**
监督集成学习模型,又称为分类集成学习模型(classifier ensemble),包括一系列常见的分类技术,如:bagging、boosting、随机森林、随机子空间、旋转森林、基于随机线性预测器的集成技术、神经网络集成技术等等。一方面,Adaboost算法是学习过程集成的典型例子。它在学习过程中不断地调整训练样本的权重,从而把多个弱分类器有机地结合成一个强分类器。另一方面,bagging技术是学习结果集成的典型例子。它通过合适的投票机制把多个分类器的学习结果综合为一个最具代表性的结果。
下图显示了学习结果集成的基本框架图。当给定一个训练集,集成学习首先通过一系列的数据映射操作,如:采样、随机子空间、扰动、投影等,生成多个不同的新训练集。新训练集之间,以及新训练集与原训练集尽可能不同。这样,我们才能够探索样本在相对稳定的类结构下的不同的表现形式。与此同时,要确保新训练集仍然保持原有的相对稳定的类结构。然后,集成学习采用新训练集训练一种或多种基本分类器,并通过选择合适的投票机制,形成组合分类器。最后,运用组合分类器对测试集中的样本进行预测,获取这些样本的标记。
在这里插入图片描述
Bagging集成基本框架图

下图显示了Adaboost集成基本框架图。当给定一个原始训练集,Adaboost算法首先赋予训练集的每个样本相等的权重系数,然后用这些样本训练一个弱分类器,并对原始训练集的样本进行预测,接着更新训练集样本的权值。标记预测错误的样本,权重减少;标记预测正确的样本,权重增加。最后,Adaboost获得权值更新的训练集。算法不断地重复之前的步骤,不断生成新训练集,不断训练新的分类器,直到获得一组分类器。这组带权重系数的分类器将用于预测测试集中样本的标记,并获得最终结果。
在这里插入图片描述
Adaboost集成基本框架图

下图显示了随机子空间集成基本框架图。当给定一个原始训练集,该算法首先对属性维进行随机采样,生成一组随机子空间;然后在子空间中生成相应的训练集,并用不同子空间下的一组新训练集来训练出一组分类器。在测试阶段,首先把测试集中的样本投影到相应的子空间中,然后用子空间的分类器预测样本标记,最后通过合适的投票机制把所有的预测结果进行综合,从而获得最终结果。
在这里插入图片描述
随机子空间集成基本框架图

半监督集成学习模型包括多视图学习模型、共性最大化学习模型等。
非监督集成学习模型,又称为聚类集成(cluster ensemble)或一致性聚类(consensus clustering),最早由Strehl所提出。经过多年的研究,大量的聚类集成学习模型被提出来,如:基于图论的聚类集成算法、基于多次谱聚类的聚类集成算法、混合模糊聚类集成算法等。
然而集成学习模型的性能往往受到
外在环境
(如:样本空间和属性空间)和内在环境(基本分类器的参数和基本分类器的权重)的影响。但是传统的集成学习模型没有考虑到这些因素的综合影响,没有考虑到如何寻找最优的集成学习模型。而多角度自适应集成学习模型不但能够考虑到集成模型的内在环境,而且能够把握集成模型和外在环境之间的关系。多角度自适应集成学习模型之间会根据解决问题的需要进行一定的信息交互,不断地进行调整,直到达到最佳的状态。多角度自适应集成学习模型将在传统集成学习模型的基础上,从多个不同角度加入自适应学习过程,从而获取最优的集成学习模型。
国际上与集成学习模型的相关研究工作还很多,以上只是列举了部分经典的研究工作的情况。国内许多著名的专家学者也在集成学习模型上做了很多的研究,如:周志华教授的团队等,在此不一一列出。如需了解更多信息,可参考周志华教授关于集成学习的新书。
集成学习未来的发展趋势主要有两大块:集成学习模型的优化集成学习模型的并行化。在大数据时代,数据来源各有不同,大数据的海量多元异构特性已经成为大数据智能处理的瓶颈。如何对多元数据进行融合和挖掘成为大数据智能处理函需解决的问题。集成学习非常适合用于多元数据融合和挖掘,在集成学习里,集成器由一组单一的学习模型所构成,每一个学习模型都可以对应每一个来源的数据,并自动地提取该数据源所蕴含有价值规律。因此,集成学习能够提供一个统一的框架用于分析异构性极强的多元数据,实现多元数据的融合、建模和挖掘,并从中寻找出有价值的数据语义,为政府的决策提供支持。然而,由于大数据的海量特性,使得集成学习模型的并行化处理技术变得日益重要。利用高性能服务器集群实现集成学习模型的并行化处理将成为集成学习未来发展趋势之一。**
集成学习作为一种提升学习系统泛化性能的常用技术,在诸多领域有着广阔的应用前景。在美国NETFLIX电影推荐比赛中,基于集成学习的推荐算法获得了第一名。在多次KDD和ICDM的数据挖掘竞赛中,基于集成学习的算法都取得了最好的成绩。例如,在生物信息学领域,Yu等人成功地把集成学习模型应用于预测蛋白与酶绑定的磷酸化位点。在数据挖掘领域,Zhu等人把集成学习模型与主动学习相结合,应用于数据流的模式挖掘。在多媒体领域,Xu等人把集成学习模型用于检测交通视频中的行人。
集成学习算法已成功应用于智能交通中的行人检测、车辆检测等,图像和视频处理中动作检测、人物追踪、物体识别等,生物信息学蛋白质磷酸化位点预测、基因组功能预测、癌症预测等,数据挖掘中的脑电数据挖掘、数据流挖掘等领域。

微信扫码关注“AI与机器学习”,获得更多AI内容
在这里插入图片描述

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值