HDU 5794 A Simple Chess (DP+lucas定理)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794

#include<bits/stdc++.h>
using namespace std;

#define debug puts("YES");
#define rep(x,y,z) for(int (x)=(y);(x)<(z);(x)++)
#define ll long long

#define lrt int l,int r,int rt
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define root l,r,rt
#define mst(a,b) memset((a),(b),sizeof(a))
#define pii pair<ll,ll>
#define fi first
#define se second
#define mk(x,y) make_pair(x,y)
const int  maxn =2e5+5;
const int mod=110119;
const int inv2=499122177;
ll powmod(ll x,ll y){ll t; for(t=1;y;y>>=1,x=x*x%mod) if(y&1) t=t*x%mod; return t;}
ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}

/*
题目大意:给定一个二维地图的维度,
地图上有若干个陷阱,陷阱是不能走入的,
起点在(1,1),终点在(n,m)其只能在右上方,
走(1,2)或者(2,1)这样的方格步进,
问从起点到终点的方案数是多少。

题目分析:对于从起点到终点(不管障碍物),方案数列个方程就好了,
假设进行了x次(1,2),y次(2,1),那么可以解出来x和y的具体表达,
组合数就是C(x+y,y)。
再考虑障碍物,用DP的思想去删除其障碍点的影响,
由于障碍点的数量十分少,二重循环即可,
对于第i个障碍点,其初始贡献是从起点到这里的数量,
对于满足大小关系的i和j障碍点,i要减去从i到j的组合数*dp[j]。
这是为了给以后要同时用到i和j的点消去重复度。
比如既然从j可以走到i,那么i到目标点的方案其因子dp[i]就不能包含经过j的方案,
这种情况会在计算j的时候考虑进去。

求组合数的时候用lucas定理搞下即可。
时间复杂度:O(m*m+110119....)

*/

int ca=0;
ll n,m,r,x,y;
pair<ll,ll> pp[105];
ll fac[mod+5],inv[mod+5],dp[105];
void init(){
    fac[0]=1LL;rep(i,1,mod) fac[i]=fac[i-1]*i%mod;
    inv[mod-1]=powmod(fac[mod-1],mod-2);
    for(int i=mod-2;i>=0;i--) inv[i]=inv[i+1]*(i+1)%mod;
}
ll C(ll p,ll q){///求组合数
    if(q>p||p<0||q<0)return 0LL;
    if(q==0||p==q) return 1LL;
    return fac[p]*inv[q]%mod*inv[p-q]%mod;
}
///n,m较大时需要用到lucas定理
ll lucas(ll p,ll q){
    if(2*q<p||2*p<q) return 0LL;
    ll tx=p,ty=q;
    if( (2*q-p)%3 || (2*p-q)%3 ) return 0LL;
    p=(2*ty-tx)/3,q=(2*tx-ty)/3;
    p+=q;

    ll ans=1;
    while(p&&q){
        ll a=p%mod,b=q%mod;
        if(a<b) return 0LL;
        ans=ans*C(a,b)%mod;
        p/=mod;
        q/=mod;
    }
    return ans;
}

int flag;
int main(){
    init();///初始化
    while(scanf("%lld%lld%lld",&n,&m,&r)!=EOF){
        n--,m--,flag=0;
        rep(i,0,r){
            scanf("%lld%lld",&x,&y);x--,y--;
            pp[i]=make_pair(x,y);
            if(x==n&&y==m) flag=1;
        }
        pp[r++]=make_pair(n,m);
        sort(pp,pp+r);///排序

        mst(dp,0);///DP过程
        rep(i,0,r) dp[i]=lucas(pp[i].fi,pp[i].se);
        rep(i,0,r) rep(j,0,i) if(pp[i].fi>pp[j].fi&&pp[i].se>pp[j].se)
            dp[i]=(dp[i]-dp[j]*lucas( pp[i].fi-pp[j].fi , pp[i].se-pp[j].se )%mod+mod)%mod;

        printf("Case #%d: ",++ca);
        if(flag) puts("0");///以防终点就是obstracle
        else printf("%lld\n",dp[r-1]);
    }
    return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要我们将这些木棒割成一些给定长度,且要每种长度的木棒的数量都是一样的,最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法时间复杂度HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值