降维方法之PCA,LDA

降维的目的

减少冗余信息造成的误差,提高数据信息的精度。

PCA 主成分分析

Principal Component Analysis(PCA)主成分分析,是最常用的线性降维方法,无监督的,它通过某种线性映射,将高维的向量转化为低维空间表示,并且希望在所投影的低维空间上数据方差尽可能的大(实际表现为数据点尽可能的分散,而不是聚作一团)

通俗的理解,如果把所有的点都映射到一起,那么几乎所有的信息(如点和点之间的距离关系)都丢失了,而如果映射后方差尽可能的大,那么数据点则会分散开来,以此来保留更多的信息。可以证明,PCA是丢失原始数据信息最少的一种线性降维方式。(实际上就是最接近原始数据,但是PCA并不试图去探索数 据内在结构)
PCA达到的目的: 使用较少的数据维度,保留尽可能多的原数据的信息。

PCA追求的是在降维之后能够最大化保持数据的内在信息,并通过衡量在投影方向上的数据方差的大小来衡量该方向的重要性。但是这样投影以后对数据 的区分作用并不大,反而可能使得数据点揉杂在一起无法区分。这也是PCA存在的最大一个问题,这导致使用PCA在很多情况下的分类效果并不好。具体可以看 下图所示,若使用PCA将数据点投影至一维空间上时,PCA会选择2轴,这使得原本很容易区分的两簇点被揉杂在一起变得无法区分;而这时若选择1轴将会得 到很好的区分结果。
在这里插入图片描述

LDA线性判别分析

Linear Discriminant Analysis(也有叫做Fisher Linear Discriminant)是一种有监督的(supervised)线性降维算法。与PCA保持数据信息不同,LDA是为了使得降维后的数据点尽可能地容易被区分
LDA达到的目的: 减少数据维度,尽可能使数据被区分。
在这里插入图片描述
还是这张图,如果是PCA方法的话,会映射到 2轴,但是如果是LDA方法那么,会使数据尽可能的区分开来,所以会映射到1轴。

LDA最后也是转化成为一个求矩阵特征向量的问题,和PCA很像,事实上很多其他的算法也是归结于这一类,一般称之为谱(spectral)方法。

PCA and LDA 区别

首先,PCA与LDA的监督方式不同。

第二,他们的目的也不同。PCA是为了去除原始数据中冗余的维度,让投影子空间的各维度的方差尽可能的大,即熵尽可能的大。LDA是通过数据降维找到那些具有判别性的维度,使得原始数据在这些维度上投影,不同类别尽可能的分隔开。

【深度学习】数据降维方法总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值