自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(64)
  • 资源 (2)
  • 收藏
  • 关注

原创 RNA研究的新发现,人类未来可能控制基因遗传

他们的发现揭示了蠕虫细胞中dsRNA摄取的几种途径,这一发现可能会改善人类的药物输送方法,从而更有效地利用RNA进行基因调控。研究小组在实验中观察到,当移除了一种名为SID-1的蛋白质后,蠕虫在将基因表达的变化传递给后代方面变得更好,这些变化甚至持续了100多代。这一发现为我们目前对遗传如何起作用的理解增加了一个新的层面,也提示我们可能通过调控RNA来实现对基因遗传的某种程度的控制。虽然新的RNA研究表明我们可能在一定程度上控制基因遗传,但这一领域仍然处于起步阶段,需要更多的研究和探索。

2025-02-09 23:57:48 315

原创 人工智能中的特征工程核心技术解析与实施指南

特征工程是机器学习流程中通过数据转换和特征构造提升模型性能的关键环节。"数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限"这一经典论断揭示了其核心价值。特征工程包含数据预处理、特征构造、特征选择和特征降维等核心环节。

2025-02-08 11:46:16 1056

原创 Python内置函数map(), list(), len(), iter(), hex(), hash()的详细解析,包括功能、语法、示例及注意事项

map():批量处理数据,惰性求值。list():灵活构造列表,处理迭代结果。len():通用长度查询,需对象实现__len__。iter():手动控制迭代过程,支持高级迭代逻辑。hex():整数转十六进制,调试或编码常用。hash():确保对象可哈希,优化数据结构性能。

2025-02-08 00:13:50 367

原创 python编程-内置函数compile(),exec(),complex(),eval()详解

可以是'exec'(编译为可执行代码),'eval'(编译为单个表达式),或'single'(编译为单个交互式语句)。‌用途‌:将一个字符串源代码编译为字节码对象,这样可以直接被Python解释器执行,或者通过exec()或eval()函数来执行。‌返回值‌:返回一个代码对象(code object),可以使用exec()或eval()函数来执行。如果不需要,可以传递一个空字符串。‌用途‌:创建一个复数对象,可以接受一个或两个参数,分别表示实部和虚部。object:可以是一个字符串,也可以是一个代码对象。

2025-02-07 23:57:02 328

原创 python编程-集合内置函数和filter(),集合常见操作

在Python中,列表、集合、字典是三种常用的数据结构,它们各自拥有一些内置函数,用于执行各种操作。filter()内置函数,用于从集合(如列表、元组等)中过滤出满足条件的元素。

2025-02-07 23:50:13 250

原创 python编程-内置函数bin(),bool(),abs() ,all(),any(),ascii(),max(),min() 详解

2、bool()函数用于将给定的值转换为布尔值(True或False)。这个函数接受任何Python对象作为参数,包括数字、字符串、列表、字典等,并返回True或False。5、any() 函数用于判断集合中的元素是否存在真值(非零、非空、非None),只要存在一个则返回True,否则返回False。1、bin()函数用于将整数转换为其二进制字符串表示。4、all() 函数用于判断集合中的所有元素是否都为真(非零、非空、非None)。3、abs() 函数用于返回一个数的绝对值或者复数的模。

2025-02-07 23:41:28 260

原创 python编程-内置函数 bytes() , bytearray()详解

bytes()函数用于创建一个新的不可变的字节序列对象,它是bytearray()的不可变版本。print(ba) # 输出: bytearray(b'\x00\x00\x00\x00\x00')print(b) # 输出: b'\x00\x00\x00\x00\x00'print(ba) # 输出: bytearray(b'hello')print(ba) # 输出: bytearray(b'Hello')print(ba) # 输出: bytearray(b'ABC')

2025-02-07 23:35:59 275

原创 python编程-类结构,lambda语法,原始字符串

在Python中,原始字符串(raw string)是一种特殊的字符串表示方式,它通过在字符串前加上r或R来表示。在原始字符串中,反斜杠\会被视为普通字符,而不会作为转义符。这意味着,在原始字符串中,我们不需要对反斜杠进行额外的转义操作。在Windows系统中,文件路径通常使用反斜杠来表示。然而,在普通字符串中,反斜杠被用作转义字符,因此在表示文件路径时需要使用双反斜杠。而使用原始字符串,则可以直接使用单个反斜杠来表示文件路径。构造器:初始化方法,用于在对象实例化时自动调用,通常用来设置对象的初始状态。

2025-02-07 23:31:52 307

原创 python编程-内置函数reversed(),repr(),chr()详解

在这个例子中,repr(now)返回了一个详细的字符串,包含了创建datetime对象所需的所有信息,而str(now)返回了一个适合人类阅读的日期时间字符串。这样,当调用repr(p)时,会返回一个详细的字符串表示,描述Point对象的状态。‌自定义对象的__repr__()方法‌对于自定义对象,我们可以通过实现__repr__()方法来自定义其repr表示。在这个例子中,使用reversed()函数反转字符串,并通过''.join()方法将反向迭代器转换为字符串。返回一个反转序列的迭代器。

2025-02-07 23:26:02 639

原创 python编程-内置函数range(),round()详解

在Python中,浮点数是以二进制形式存储的,而某些十进制小数(如2.675)在二进制中无法精确表示,因此会存在微小的舍入误差。Python的round()函数遵循的是“四舍六入五成双”的规则,也称为“银行家舍入”规则。range()函数返回的是一个range对象,这个对象是一个不可变的序列类型,可以用于迭代。示例:range(1, 10, 2)生成[1, 3, 5, 7, 9]。示例:range(2, 7)生成[2, 3, 4, 5, 6]。示例:range(5)生成[0, 1, 2, 3, 4]。

2025-02-07 23:19:17 309

原创 python编程-内置函数globals(),getattr(),property(),hasattr(),delattr(),dict()详解

getattr()用于获取对象的属性值。如果对象具有指定的属性,则返回该属性的值;hasattr() 函数用于判断对象是否包含对应的属性或方法。如果对象有指定的属性或方法,返回 True,否则返回 False。delattr() 函数用于删除对象的属性。它返回一个字典,其中包含了全局作用域中的所有变量名和对应的值。property() 函数可以把类中的方法伪装成属性。iterable:可迭代对象,每个元素是一个包含两个元素的元组或列表‌。default (可选): 如果属性不存在,返回的默认值。

2025-02-07 23:14:03 406

原创 Python编程-加号的用法和内置函数enumerate()

用于遍历可迭代对象(如列表、元组、字符串等)时同时获取元素的索引和值。它返回一个 迭代器,每次迭代返回一个包含两个元素的元组,第一个是元素的索引,第二个是元素的值。enumerate() 返回的是一个可迭代的对象,它会生成一个包含索引和值的元组。你可以使用 for 循环来遍历这些元组。注意,虽然加号运算符非常灵活,但它不支持类型之间的隐式转换,即它要求两侧的操作数类型必须兼容。iterable:这是一个可以被迭代的对象(如列表、元组、字符串等)。当两侧操作数都是列表时,列表合并成一个新的列表。

2025-02-07 23:05:20 292

原创 基因编辑改写命运!CRISPR 让10位失明者重见光明,AI加持的生物科技进入“改写生命代码“时代

当CRISPR 3.0技术首次实现人类视网膜基因精准修复,这场改写生命代码的技术革命正以超乎想象的速度重构医疗、伦理与人类进化轨迹。本文将深入解析基因疗法的三大技术突破,并揭示其引发的全球产业链巨变。2025年1月31日,当23岁的艾米丽在波士顿眼科医院摘下纱布时,她第一次看见了自己未婚夫的脸——这场奇迹的背后,是CRISPR 3.0技术对生命密码的终极破译……

2025-02-06 20:45:40 1634

原创 医疗AI历史性突破!DeepMind诊断系统获FDA认证,人类对抗癌症与老年痴呆迎来“超级助手“

这场由代码和数据驱动的健康革命,正在重新定义生命的价值尺度——而我们唯一能确定的是,未来的手术台上,注定会躺着更多闪烁的硅基生命体。2025年1月29日,当谷歌DeepMind的AI诊断系统获得FDA批准时,洛杉矶的玛丽亚女士刚刚拿到自己的体检报告——AI在CT影像角落找到一个3毫米的癌变组织,而这份报告,将彻底改写她的命运……放射科革命:美国放射学会数据显示,AI已承担45%的影像初筛工作,资深医师转向复合型"AI督导"岗位;医生群体态度调查:62%认为AI将提升医疗质量,但89%反对完全取代人类诊断。

2025-02-06 17:57:27 2645

原创 python编程-文件和目录操作,字符串操作

python的文件和目录操作主要用到os包。

2025-02-05 18:25:25 411

原创 人工智能(AI)当前发展势头和研究方向

同时,DALL-E 和 ChatGPT 的结合显示了多模态生成能力的强大潜力,使得用户可以通过文本描述生成相应的图像。最近的研究通过改进的算法(如 PPO、A3C)和强化学习与深度学习的结合,能够在复杂环境中实现端到端的学习。生成对抗网络(GANs)为图像生成开辟了新的路径。GANs 由生成器和判别器两个网络组成,生成器学习生成尽可能真实的图像,而判别器学习区分生成的图像和真实图像。最近的进展,如 StyleGAN 和 BigGAN,能够生成高分辨率和高质量的图像,在艺术创作、游戏开发等领域显得尤为重要。

2025-01-24 13:51:38 1395

原创 深度学习,python编程运行环境问题等记录(更新)

命令:pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/MiniCPM-V 2.6支持单图、多图和视频理解,能够在这些领域达到SOTA水平,甚至超越GPT-4V和Gemini 1.5 Pro等商用模型‌。‌MiniCPM-V 2.6是一款强大的多模态模型,能够处理文本、图像、音频和视频等多种类型的数据,并生成高质量的输出。阿里镜像:https://mirrors.aliyun.com/pypi/simple/

2025-01-24 12:07:57 1099

原创 机器学习-核函数(Kernel Function)

核函数(Kernel Function)是一种数学函数,主要用于将数据映射到一个更高维的特征空间,以便于在这个新特征空间中更容易找到数据的结构或模式。核函数的主要作用是在不需要显式计算高维特征空间的情况下,通过内积操作来实现高维映射,从而简化计算。

2025-01-21 22:08:39 950

原创 python编程-OpenCV(图像读写-图像处理-图像滤波-角点检测-边缘检测)图像变换

图像处理中的形态学操作是处理图像结构的有效方法。以下是一些常见的形态学操作的介绍及其在OpenCV中的实现示例。

2025-01-18 23:03:59 679

原创 python编程-OpenCV(图像读写-图像处理-图像滤波-角点检测-边缘检测)边缘检测

Scharr算子是一种改进的Sobel算子,它使用更复杂的权重来提高梯度计算的精确度,尤其是在低对比度边缘上。Scharr算子与Sobel算子的不同点是在平滑部分,其中心元素占的权重更重,相当于使用较小标准差的高斯函数,也就是更瘦高的模板。它通过对图像进行卷积操作来计算图像的梯度,并将梯度的大小作为边缘的强度。它使用两个3x3的卷积核,分别用于计算水平方向(Gx)和垂直方向(Gy)的梯度,通过对两个方向的梯度进行合并来得到最终的边缘图像。它通过计算图像的二阶导数来查找图像中的边缘。

2025-01-18 22:41:15 630

原创 python编程-OpenCV(图像读写-图像处理-图像滤波-角点检测-边缘检测)角点检测

角点检测(CornerDetection)是计算机视觉和图像处理中重要的步骤,主要用于提取图像中的关键特征,以便进行后续的任务,比如图像匹配、物体识别、运动跟踪等。下面介绍几种常用的角点检测方法及其应用。

2025-01-18 22:39:43 1780

原创 kafka集群安装Raft 协议

​使用消息中间件,可以实现系统与系统之间的异步通信和无缝对接,也可用在模块之间的的异步通信,有效避免了同步阻塞IO。作为一个高吞吐量、可扩展、高可靠性的分布式消息系统,Kafka 能够胜任从简单的消息队列到复杂的流处理平台的多种角色。MQTT消息系统和kafka是当前最常用的消息中间件。

2025-01-17 12:26:35 1041

原创 python编程-数组和矩阵运算库numpy

NumPy 是一个强大的科学计算库,提供了许多操作和功能来处理数组和矩阵。以下是一些常见的 NumPy 操作,包括数组创建、切片、基本运算和一些其他有用的功能。

2025-01-16 10:57:53 319

原创 深度学习-算法优化与宇宙能量梯度分布

这些优化算法适用于不同类型的问题,每种算法都有其独特的优势和局限性。选择合适的优化算法通常取决于具体的应用场景、问题规模以及对解的准确度和计算效率的需求。在实际应用中,实践者往往需要根据问题特性、资源限制和期望结果来选择最合适的算法。

2025-01-13 16:37:05 1615

原创 深度学习blog-剪枝和知识蒸馏

是一种模型压缩技术,旨在将大型深度学习模型(通常称为“教师模型”)中的知识转移到较小的模型(称为“学生模型”)中。深度学习网络模型从卷积层到全连接层存在着大量冗余的参数,大量神经元激活值趋近于0,将这些神经元去除后可以表现出同样的模型表达能力,这种情况被称为过参数化。因此需要一些技术手段减少模型的复杂性,去除一些不重要的参数和连接,从而提高模型在推理阶段的效率,减少存储需求,同时可能还能够降低过拟合的风险。教师的结构是预定义的,很少关注教师模型的结构及其与学生模型的关系。由于剪枝后的模型通常很。

2025-01-13 16:17:12 1232

原创 深度学习blog-图神经网络(HAN,HetGNN,HGAT)

在图神经网络(GNN)领域,(Heterogeneous Attention Network)是专门为异构信息网络(Heterogeneous Information Networks, HIN)设计的一种模型。HAN通过节点级别聚合和语义级别聚合来有效捕捉不同类型节点间的关系,结合多种信息,提供了一种灵活的方式来学习节点表示。

2025-01-13 16:14:50 1302

原创 深度学习-图神经网络-超图概念及在Hyper-YOLO的应用(小白也看懂)

1、超图的注意力目标是学习一个动态关联矩阵。获得能够更好地揭示顶点间内在关系地动态转移矩阵。2、要使在H上用注意力机制模块,必须假定边和顶点是可比的。这取决于超图如何构造。3、例如可以将中心节点和k个最近邻节点共同形成一个超边。当节点和超边可以比较时,可以得到超图的注意力机制。

2025-01-12 22:46:06 2399 2

原创 深度学习blog-Meanshift均值漂移算法-最大熵模型

均值漂移(Mean Shift)是一种无监督的聚类算法,广泛应用于数据挖掘和计算机视觉任务。它通过移动样本点到其近邻的均值位置来寻找数据的高密度区域,最终形成聚类。均值漂移算法的核心思想是通过滑动窗口(核函数)在数据空间中找出数据的密集区域。其主要步骤如下:核函数:选择一个核函数(通常是高斯核)来定义每个点周围的邻域。均值计算:在当前点周围的邻域内计算均值或质心。更新位置:将当前点移动到计算得到的均值位置。迭代:重复上述过程,直到点的位置不再变化或变化非常小。通常选择一个带宽(bandwidth),用于调节

2025-01-07 23:24:10 929

原创 深度学习blog-隐马尔可夫模型

隐马尔可夫模型(Hidden Markov Model, HMM)是一种用于描述具有隐含状态序列的随机过程的统计模型。它广泛应用于时间序列分析、自然语言处理、语音识别、生物信息学等领域。

2025-01-07 22:57:26 1108

原创 深度学习blog-RAG构建高效生成式AI的优选路径

在新闻报道或学术写作中,RAG可以自动从诸多文章中提取关键信息,生成高效且丰富的摘要。它能够帮助用户快速获取重要信息,节省时间。

2025-01-05 14:04:41 1052

转载 深度学习blog之注意力常见注意力模块(附代码)

SE模块通过全连接层来计算,而ECA则采用了更简单高效的方式,它避免了全连接层,直接在全局平均池化后的特征图上使用 1×1卷积核,这避免了维度缩减并且有效地捕捉了通道之间的交互关系。‌Squeeze-and-Excitation Attention‌:利用卷积神经网络的核心构建块,通过融合每一层的局部感受野内的空间和通道信息,构造信息丰富的特征‌。SE机制的核心思想是通过显式建模通道间的依赖关系,使网络能够关注最相关的特征通道,抑制不重要的通道,从而提高表示能力和性能。

2025-01-05 13:44:42 1528

原创 深度学习blog-深刻理解线性变换和矩阵

深度学习中避免不了矩阵运算,或者张量(其实是矩阵数组)运算。卷积是矩阵加、乘法,注意力也是一样。本质都一样,所谓注意力,卷积、滤波,是对不必了解数学的人说的,底层都是矩阵运算,线性变换。任何一个向量都可以用基向量的线性组合来表示。即任何一个向量都可以用基向量通过线性变换得到。矩阵相乘的几何意义就是两个线性变换的相继作用。通过线性变换,不仅可以得到这一组合的变换结果,也可以有效地计算任意向量的线性变换结果。看看旋转变换:比如上图所示,向量R逆时针旋转角度B前后的情况。

2025-01-04 16:22:54 1009

原创 深度学习blog- 数学基础(全是数学)

例如,如果你想重塑一个张量为二维张量,而不知道其中一维的大小,可以用 view 函数中的 -1 作为占位符,PyTorch 会自动计算出相应的维度。RMSProp是由Geoff Hinton提出的一种自适应学习率的梯度下降方法,它通过计算梯度的平方的指数衰减平均值来调整学习率。因此,只有方阵才有可能是可逆的。数据类型(dtype):这是整个张量中数据元素的数据类型,张量的类型可以是 float32 、 uint8 、 float64 等。向量之中的数,称之为该向量的分量,但是这些数,必须以有序的方式排列。

2024-12-30 18:26:10 1245

原创 深度学习blog-Transformer-注意力机制和编码器解码器

第五步,通过上述步骤就可以得到一个 Mask Self-Attention 的输出矩阵,然后和 Encoder 类似,通过 Multi-Head Attention 拼接多个输出,然后计算得到第一个 Multi-Head Attention 的输出Z,Z与输入X维度一样。FFN(Z)=(2,64)x(64,1024)x(1024,64)=(2,64),我们发现维度没有发生变化,这两层网络就是为了将输入的Z映射到更加高维的空间中(2,64)x(64,1024)=(2,1024),

2024-12-26 18:10:58 1005

原创 深度学习blog-卷积神经网络(CNN)

*卷积层(Convolutional Layer):**使用多个卷积核(滤波器)对输入数据进行卷积操作,提取特征。该层的输出是特征图,显示了输入数据中的特征。卷积操作是通过一个小的滤波器(或卷积核)在输入图像上滑动来计算的,每次滑动时,卷积核与局部区域的像素值做点积运算,并输出一个新的值。**池化层(Pooling Layer):**对特征图进行下采样,通常使用最大池化或平均池化,减少特征的尺寸,降低计算复杂度,同时保留重要特征。**卷积操作:**通过卷积核与输入图像的局部区域进行点积,生成特征图。

2024-12-25 14:51:24 1053

原创 Springboot 整合DL4J 打造智能写作助手(文本生成)

最后,将应用部署到云平台(如 AWS、Azure)或容器(如 Docker)中。首先,训练一个文本生成模型,通常可以使用 LSTM(长短期记忆网络)或 GRU(门控递归单元)等神经网络结构。prepareInput(String seedText):将输入文本转换为模型所需的格式(特征表示)。对于这些文本,您可以将它们存储在 CSV 或文本文件中,后续程序可以读取并生成需要的输入格式。给定一个启动文本(seeding text),产生后续的文本,直到达到所需的长度。准备一个大的文本数据集,用于训练模型。

2024-12-18 17:34:47 1357

原创 深度学习之循环神经网络及进化(RNN-LSTM-GRU)

LSTM的梯度反向传播过程可能会涉及到复杂的计算和动态规划技巧,因为每个时间步的梯度都依赖于前面时间步的计算结果。更新门用于控制上一时刻隐藏状态对当前时刻隐藏状态的贡献程度,而重置门用于控制当前输入对当前时刻隐藏状态的更新程度。RNN 是一种死板的逻辑,越晚的输入影响越大,越早的输入影响越小,且无法改变这个逻辑。容易出现梯度消失或梯度爆炸。GRU:由于结构简单,通常在小样本和短序列任务上能够表现出更快的收敛速度,公式的计算量也较小。LSTM:有三个门(输入门、遗忘门、输出门),每个门都有自己的权重和偏置。

2024-12-18 17:02:10 716

原创 机器学习经典算法(scikit-learn)

学习向量量化 (Learning Vector Quantization)学习向量量化可以使用 KNN 的变种,通常在实际使用中与 KNN 一起。安装库:pip install scikit-learn numpy。支持向量机 (Support Vector Machine)

2024-12-18 11:27:58 500

原创 TensorFlow和Keras的区别和关系

总的来说,TensorFlow 是一个功能强大的深度学习平台,而 Keras 是其上的一层抽象,旨在为开发者提供更高级、易用的接口。是基于机器学习的一种方法,它利用计算机复杂的多层神经网络,将数据映射到更深层次的抽象,从而更好地表示数据,从而使有效学习更复杂的模式成为可能。是计算机系统从经验中自动学习的一门学科,它的核心是从数据中构建算法模型,以便系统能够预测和改进某种行为,从而更加智能地执行新任务。两者的目标都是简化深度学习模型的构建和训练,降低学习门槛,使得开发者可以更快速地实现和测试自己的模型。

2024-12-18 09:35:04 848

原创 优化算法之梯度下降(数学推导和代码)

对多元函数的参数求偏导,把求得的各个参数的偏导以向量的形式写出来,就是梯度。对于一元函数,梯度等于这一点的导数。例如均方差,它反映了模型预测结果与实际标签之间的差异程度。我们的目标是通过调整模型参数,使损失函数的值最小化。梯度是损失函数关于模型参数的偏导数,函数在该点处沿着该方向(梯度的方向)变化最快。它是一个向量(矢量)。梯度下降算法针对的是最小优化问题(即求最小值问题),为了找到使损失函数取最小值的权重(w)和偏置(b)。往梯度的方向更新参数。

2024-12-17 18:05:02 282

java知识总结文档,包括基础语法,javaIO,java线程,javaStream,23种设计模式,spring、mybatis、kafka等开源软件知识总结,附有相关代码

java知识总结文档,包括基础语法,javaIO,java线程,javaStream,23种设计模式,spring、mybatis、kafka等开源软件知识总结,附有相关代码。

2024-12-13

mysql函数参考文档

mysql函数参考文档,mysql函数大全,mysql常用函数

2024-09-30

Wireshark_264

Wireshark_264.zip

2018-11-08

redis-desktop-manager-0.9.3.817

redis-desktop-manager-0.9.3.817

2018-11-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除