百度Paddle免费课程——从零开始学视觉Transformer(自己免费分享听课笔记,百度网盘链接哦)

这篇博客分享了作者从百度Paddle的免费课程中学到的视觉Transformer知识,包括ResNet18实现、图像与Transformer基础、注意力机制、ViT和Swin Transformer模型等,并提供了详细的课程学习笔记的百度网盘链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

百度Paddle免费课程——从零开始学视觉Transformer

  • 本学习笔记来源于百度Paddle免费课程从零开始学视觉Transformer:如果有时间建议大家去看至少两遍,干货很多。链接:
    https://aistudio.baidu.com/aistudio/course/introduce/25102
  • 本次的课程代码都在:https://github.com/BR-lDL/PaddleViT
  • 我的学习笔记:记录一些内容以及PPT,以及实现代码。
  • 十一次课的学习笔记,写在了这个专栏里。因为我直接用CSDN直接写的,后期有时间稍微空闲的时候,才导出的word和pdf格式。免费分享记的笔记嗷!!
  • 重要的事说三遍哦!!
  • !!!!!!!!!无需订阅专栏哦,自己总结的课程学习笔记的百度网盘链接:链接: https://pan.baidu.com/s/1Z9w9biipueLF1J-yg0rN6g 提取码: 4h44
  • !!!!!!!!!无需订阅专栏哦,自己总结的课程学习笔记的百度网盘链接:链接: https://pan.baidu.com/s/1Z9w9biipueLF1J-yg0rN6g 提取码: 4h44
  • !!!!!!!!!无需订阅专栏哦,自己总结的课程学习笔记的百度网盘链接:链接: https://pan.baidu.com/s/1Z9w9biipueLF1J-yg0rN6g 提取码: 4h44

课程内容如下:

  • 课程一:实现ResNet18(残差网络)
    1. Why Transformer?
    2. 实现ResNet18代码:
  • 课程二:图像与Transformer基础
    1. 数字图像:图像和像素
    2. 实现Tensor使用
    3. 实现Patch Embedding:
  • 课程三:视觉问题中的注意力机制
    1. Vision Transformer回顾
    2. Attention注意力机制
    3. 实现Multi-Head Self Attention:
  • 课程四: ViT模型全流程拆解
    1. Multi-Head Self Attention:回顾
    2. 实现Vision Transformer:从论文到代码(还需理解⚠️)
  • 课程五:如何训练ViT模型?DeiT算法解析
    1. Vision Transformer模型回顾
    2. 实现DeiT:从论文到代码(还需理解⚠️)
    3. 实现数据处理(paddle.vision.transform.compose)自己实现
  • 课程六:Swin Transformer-1
    1. Vision Transformer回顾
    2. Swin Transformer
    3. 实践:Swin transformer
  • 课程七: Swin Transformer-2
    1. Swin Transformer回顾
    2. Shifted Window Multi-Head Self Attention
    3. Relative Position Bias
    4. 实战Swin Transformer
  • 课程八:卷积和Transformer结合的ViT
    1. 回顾Swin Transformer
    2. 卷积和Transformer结合——MobileViT
    3. 实践Swin Transformer
    4. 实践数据加载Dataloader
  • 课程九: 自监督ViT算法:BeiT和MAE
    1. SSL在NLP中的应用:
    2. Bert
    3. BeiT
    4. MAE:Masked Autoencoders Are Scalable Vision Learners
    5. 实践:Config配置和实验分开进行
  • 课程十: 目标检测DETR-1
  • 课程十一:目标检测DETR-2

很推荐这门课,原因如下:

  1. Vision Transformer的框架讲解,细粒度到里面的代码实现。
  2. 对ViT论文分析,以及一些前沿的论文(BeiT、MobileViT)
  3. 逐行coding实现
  4. 讲授的朱老师超级牛~很喜欢听他讲课。

学习笔记的百度网盘链接

链接: https://pan.baidu.com/s/1Z9w9biipueLF1J-yg0rN6g 提取码: 4h44
–来自百度网盘超级会员v5的分享

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值