SIFT原理介绍
步骤分为两步:
- 特征点检出
- 特征点描述
特征点检出
主要是用了DoG,就是把图像做不同程度的高斯模糊blur,平滑的区域或点肯定变化不大,而纹理复杂的比如边缘,点,角之类区域肯定变化很大,这样变化很大的点就是特征点。当然为了找到足够的点,还需要把图像放大缩小几倍(Image Pyramids)来重复这个步骤找特征点。可代替特征点检出的还有很多其他方法,如MSER等。
-
候选关键点
Koenderink(1984)和Lindeberg(1994)已经证明,在各种合理的假设下,高斯函数是唯一可能的尺度空间核。因此,图像的尺度空间被定义为函数,它是由一个可变尺度的高斯核和输入图像生成, 其中高斯核为, 为了有效检测尺度空间中稳定的极点,Lowe于1999年提出在高斯差分函数(DOG)中使用尺度空间极值与图像做卷积,这可以通过由常数乘法因子分隔的两个相邻尺度的差来计算。用公式表示就是, 由于平滑区域临近像素之间变化不大,但是在边、角、点这些特征较丰富的地方变化较大,因此通过DOG比较临近像素可以检测出候选关键点。
(1)Octave组数 = [log2(min(M, N))] - 3,层数S = n + 3,其中n代表想要在DO