Pow(x, n)

实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,xn)。

本题的方法被称为「快速幂算法」,有递归和迭代两个版本。

思路一:快速幂 + 递归

“快速幂运算”的本质是分治算法。

  1. 当我们要计算xn时,我们可以先递归地计算出y = x⌊n/2⌋,其中⌊a⌋表示对 a 进行下取整。
  2. 根据递归计算的结果,如果n为偶数,那么xn = y2;如果n为奇数,那么xn = y2 x x;
  3. 递归的边界为n = 0,任意数的0次方均为1。
    由于每次递归都会使得指数减少一半,因此递归的层数为 O(\log n)O(logn),算法可以在很快的时间内得到结果。
class Solution {
public:
    double quickMul(double x, long long N) {
        if (N == 0) {
            return 1.0;
        }
        double y = quickMul(x, N / 2);
        return N % 2 == 0 ? y * y : y * y * x;
    }

    double myPow(double x, int n) {
        long long N = n;
        return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N);
    }
};

复杂度分析:

  • 时间复杂度:O(logn),即为递归的层数。
  • 空间复杂度:O(logn),即为递归的层数。这是由于递归的函数调用会使用栈空间。

思路二:快速幂 + 迭代

由于递归需要使用额外的栈空间,我们试着将递归转写为迭代。
以x77作为例子:

我们从x开始不断地进行平方,得到x2,x4,x8,x16,……,如果n的第k个(从右往左,从0开始计数)二进制位为1,那么我们就将对应的贡献x ^ 2k计入答案。

class Solution {
public:
    double quickMul(double x, long long N) {
        double ans = 1.0;
        // 贡献的初始值为 x
        double x_contribute = x;
        // 在对 N 进行二进制拆分的同时计算答案
        while (N > 0) {
            if (N % 2 == 1) {
                // 如果 N 二进制表示的最低位为 1,那么需要计入贡献
                ans *= x_contribute;
            }
            // 将贡献不断地平方
            x_contribute *= x_contribute;
            // 舍弃 N 二进制表示的最低位,这样我们每次只要判断最低位即可
            N /= 2;
        }
        return ans;
    }

    double myPow(double x, int n) {
        long long N = n;
        return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N);
    }
};

复杂度分析

  • 时间复杂度:O(logn),即为对 n 进行二进制拆分的时间复杂度。
  • 空间复杂度:O(1)。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值