7-44 黑洞数 (20 分)
黑洞数也称为陷阱数,又称“Kaprekar问题”,是一类具有奇特转换特性的数。
任何一个各位数字不全相同的三位数,经有限次“重排求差”操作,总会得到495。最后所得的495即为三位黑洞数。所谓“重排求差”操作即组成该数的数字重排后的最大数减去重排后的最小数。(6174为四位黑洞数。)
例如,对三位数207:
- 第1次重排求差得:720 - 27 = 693;
- 第2次重排求差得:963 - 369 = 594;
- 第3次重排求差得:954 - 459 = 495;
以后会停留在495这一黑洞数。如果三位数的3个数字全相同,一次转换后即为0。
任意输入一个三位数,编程给出重排求差的过程。
输入格式:
输入在一行中给出一个三位数。
输出格式:
按照以下格式输出重排求差的过程:
序号: 数字重排后的最大数 - 重排后的最小数 = 差值
序号从1开始,直到495出现在等号右边为止。
输入样例:
123
输出样例:
1: 321 - 123 = 198
2: 981 - 189 = 792
3: 972 - 279 = 693
4: 963 - 369 = 594
5: 954 - 459 = 495
下面的代码有一个测试点没过
#include<stdio.h>
int main()
{
int n,a,b,c,max,mid,min,i=1,x,y;
scanf("%d",&n);
while(n!=495 ){
a=n/100;
b=n%100/10;
c=n%10;
if(a==b&&a==c){
printf("1: %d - %d = 0\n",n,n);
break;
}
if(a==0){
break;
}
mid=a+b+c;
max=a>b?a:b;
max=max>c?max:c;
min=a>b?b:a;
min=min>c?c:min;
mid=mid-min-max;
x=max*100+mid*10+min;
y=min*100+mid*10+max;
n=x-y;
printf("%d: %d - %d = %d\n",i,x,y,n);
i++;
}
return 0;
}