#LeetCode
1.DFS
需要建立有向图,用二维数组来建立,我们需要一个一维数组 visit 来记录访问状态,这里有三种状态,0表示还未访问过,1表示已经访问了,-1 表示有冲突。大体思路是,先建立好有向图,然后从第一个门课开始,找其可构成哪门课,暂时将当前课程标记为已访问,然后对新得到的课程调用 DFS 递归,直到出现新的课程已经访问过了,则返回 false,没有冲突的话返回 true,然后把标记为已访问的课程改为未访问。代码如下:
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>());
vector<int> visit(numCourses);
for (auto p : prerequisites)
{
graph[p[1]].push_back(p[0]);
}
for (int i = 0; i < numCourses; i++)
{
if (!canFinishDFS(graph, visit, i))
return false;
}
return true;
}
// visit -1 conflict , 0 not visit, 1 has visited
bool canFinishDFS(vector<vector<int>>& graph, vector<int>& visit, int i) {
if (visit[i] == -1)
return false;
if (visit[i] == 1)
return true;
visit[i] = -1;
for (auto g : graph[i])
{
if (!canFinishDFS(graph, visit, g))
return false;
}
visit[i] = 1;
return true;
}
};
2. BFS
定义二维数组 graph 来表示这个有向图,一维数组 in 来表示每个顶点的入度。我们开始先根据输入来建立这个有向图,并将入度数组也初始化好。然后我们定义一个 queue 变量,将所有入度为0的点放入队列中,然后开始遍历队列,从 graph 里遍历其连接的点,每到达一个新节点,将其入度减一,如果此时该点入度为0,则放入队列末尾。直到遍历完队列中所有的值,若此时还有节点的入度不为0,则说明环存在,返回 false,反之则返回 true。代码如下:
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>());
vector<int> inDegree(numCourses, 0);
for (auto &p : prerequisites)
{
graph[p[1]].push_back(p[0]);
inDegree[p[0]]++;
}
queue<int> q;
for (int i = 0; i < numCourses; ++i)
{
if (inDegree[i] == 0)
q.push(i);
}
while (!q.empty())
{
int t = q.front();
q.pop();
for (auto& g : graph[t])
{
--inDegree[g];
if (inDegree[g] == 0)
q.push(g);
}
}
for (int i = 0; i < numCourses; ++i)
{
if (inDegree[i] != 0)
return false;
}
return true;
}
};
3.可以用拓扑排序
排序失败说明有环存在