- 博客(107)
- 资源 (8)
- 收藏
- 关注
原创 YOLO11网络结构以及改进1
回到yolo11.yaml文件,我们只是绘制了对应的网络模块,而没有管后面的参数信息,这明显是不够的,后期我们进行模型改进,也是要注意这个的,不是随心所欲。位置:ultralytics/nn/modules/conv.py。特点:YOLO11代码更加模块化以及简洁化。所以只需要在yaml中加入即可。由于本身就有CBAM的代码。改进一定要修改此处代码。
2025-02-14 22:50:54
527
原创 python实现常见数学概率分布
Bea分布是一种在区间【0,1】上定义的连续概率分布,常用于描述在有限区间内取值的随机变量的概率分布情况。它由两个正实数参数α以及β来控制形状,这两个参数也称为形状参数。Beta分布在贝叶斯统计,机器学习,概率论等多个领域都有广泛的应用,例如在估计事件发生的概率,建模比例数据等方面。正态分布,非常符合现实中一些数据的分布,所以广泛运用于金融,数学领域。
2025-02-12 21:48:58
312
原创 python之skimage库以及PIL库
关于skimage概述skimage(Scikit - Image)是一个用于图像处理的Python库。它建立在SciPy之上,利用NumPy数组进行高效的存储和计算,提供了大量的算法和工具,用于图像的读取、预处理、分割、特征提取等多种操作,在计算机视觉、医学图像处理、遥感图像处理等众多领域广泛应用。安装可以使用pip进行安装,在命令行中输入。如果使用Anaconda环境,也可以通过conda命令安装,如。图像读取与保存读取图像skimage.io模块提供了读取图像的功能。例如,使用。
2025-01-08 18:30:16
58
原创 深度学习之计算机视觉相关数据集
最近论文需要用到公共数据集,但是下载老慢了,这里下载了,存在百度网盘了,需要的朋友自提哦.PASCAL VOC2012数据集是计算机视觉领域中用于目标检测、图像分割等任务的经典数据集,以下为您详细介绍:通过网盘分享的文件:VOCtrainval_11-May-2012_2.tar链接: https://pan.baidu.com/s/1tFazsrz87QQ_mfIoknbhqA?pwd=s3ea 提取码: s3ea–来自百度网盘超级会员v5的分享PASCAL VOC2012下载链接
2025-01-03 11:36:30
1406
原创 python基础004--flask
每个框架的具体步骤和细节可能有所不同,但大致流程是相似的。例如,Django提供了一个“电池包含”的解决方案,包括ORM、管理后台等,而Flask则更轻量,需要开发者自行选择和集成组件。FastAPI是一个现代、快速(高性能)的Web框架,用于构建APIs,而Tornado是一个异步网络库,适合需要长连接的应用。选择框架时,应考虑项目需求、团队熟悉度以及社区支持等因素。最近有粉丝想我写一篇关于web开发的python案例,于是借此机会,2024年最后一天,写一个,祝大家学业有成,万事如意,平安喜乐~
2024-12-31 16:59:52
2093
原创 pytorch基础之注解的使用--003
在 Python 中,注解(也称为装饰器)是一种特殊的语法结构,它允许你修改函数、方法或类的行为。自定义注解可以让你在不修改原有代码逻辑的基础上,添加额外的功能。
2024-12-30 21:49:31
258
原创 Pytorch基础之meshgrid--002
index采用默认方式plt.title('网格点的散点图')plt.show()不懂就问,各个击破,源码终将被你我看懂~~
2024-12-30 10:44:27
190
原创 pytorch基础语法001
概述- PyTorch是一个开源的深度学习框架,由Facebook的人工智能研究团队(FAIR)开发。它主要用于自然语言处理、计算机视觉等众多深度学习领域的模型开发与训练,是当前深度学习领域最受欢迎的工具之一。主要特点动态计算图- 与一些其他深度学习框架不同,PyTorch采用动态计算图。这意味着计算图是在运行时构建的,而不是像静态计算图那样在编译时就固定。例如,在一个简单的神经网络训练过程中,每次前向传播时,计算图可以根据输入数据的形状、操作顺序等灵活变化。
2024-12-29 10:54:19
572
原创 卷积与反卷积
卷积:对图像矩阵进行扫描,寻找到图像的特征信息以及轮廓,纹理以及进一步的语义信息。**反卷积:**对卷积后的图像进行反向操作,做逆向操作,还原图像到之前的状态。所有的逻辑运算,均需要我们一步步去推导,否则学完一遍,还是啥都不会,加油,人工智能小伙伴。卷积。
2024-12-05 15:37:12
217
原创 pytorch基础:模型的权值初始化与损失函数
损失函数: 衡量模型输出与真实标签的差异.而我们谈损失函数的时候,往往会有三个概念:损失函数,代价函数,目标函数.函数名定义损失函数(Loss Function)计算一个样本的模型输出与真实标签的差异Loss = f(y^,y)代价函数 (Cost Function)计算整个样本的模型输出与真实标签的差异,是所有样本损失函数的平均值目标函数(objective Function)代价函数加上正则项.实际上就直接说成损失函数# forward# view。
2024-10-06 16:11:22
1234
原创 Pytorch基础:网络层
唯一的不同就是前向传播的时候我们需要传进一个indices, 我们的索引值,要不然不知道把输入的元素放在输出的哪个位置上。卷积过程:类似于用一个模板去图形上寻找与它相似的区域,与卷积核模式越相似,激活值越高,从而实现特征提取.最大值池化和平均池化的差别:最大池化的亮度会稍微亮一些,毕竟它都是取的最大值,而平均池化是取平均值。如图用2×2的窗口进行池化操作,最大池化用最大值代替这个窗口,平均池化用平均值代替这个窗口。功能:对二维信号(图像)进行最大值池化上采样(反池化:将大尺寸图像变为小尺寸图像)
2024-10-06 11:55:06
1146
JAVA学习笔记经典版
2022-04-28
大棚控制系统,西门子可编程逻辑控制器
2022-04-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人