这篇论文首次提出了基于空域(Spectral-domain)和基于频域(Spatial-domain)的图上卷积神经网络。
从题目可以看出,这篇论文分为两部分,一部分是Deep Locally Connected Networks,一部分是Spectral Networks。前者是基于空域角度去设计图卷积的,而后者是基于频域角度设计图卷积。
Spatial Construction
空域上的工作,作者的意图是设计一种network适用于拓扑结构,且具备卷积的性质(局部连接和层次化表达,在图卷积中没有local translational invariance这个特性),用来提取拓扑结构上的特征。本质上就是找出每个顶点的neighbors,并对其特征进行提取。而这里需要思考的两个问题是:
- 按照什么条件去找中心的neighbors,也就是确定receptive field?
- 确定receptive field,按照什么方式处理包含不同数目neighbors的特征?
Locality via W W W
对于第一个问题,作者是通过对称非负的矩阵 W W W(其实就是图的邻接矩阵),并通过设定一个阈值 δ \delta δ,来确定中心结点的neighbors:
N δ ( j ) = { i ∈ Ω : W i j > δ } N_{\delta}(j)=\{i \in \Omega: W_{ij} > \delta\} Nδ(j)={
i∈Ω:Wij>δ}
这种方式即实现了locality,能得到一个局部连接的网络,减少了网络的参数。但这种方式确定neighbors,存在一个问题,就是对于每个结点都需要单独计算neighbors。
Multiresolution Analysis on Graphs
在CNN中,通过pooling和subsampling layer减小grid的大小,其过程就是将输入特征map到一个cluster中,输出一个对应这个cluster的单一feature。而在图上,关于multiscale clustering,有较多这方面的文献。
上图是图上的两层clustering,第一层有12个结点,有6个clustering,通过图上的pooling操作,映射到下一层就为6个结点,图的规模减小了,此时对其进行聚类,就是3个clustering。
Deep Locally Connected Networks
在第k层,输入维度为 d k − 1 × f k − 1 d_{k-1} \times f_{k-1} dk−1×fk−1 的 x k = ( x k , i ; i = 1... f k − 1 ) x_k = (x_{k,i};i=1...f_{k-1}) xk=(xk,i;i=1...f