Spectral Networks and Deep Locally Connected Networks on Graphs

Paper : Spectral Networks and Deep Locally Connected Networks on Graphs
Code :

摘要

Yann LeCun 组在nips2014发表的有关卷积在图上迁移的理论研究成果,可能是最早的一篇研究Graph Convolution 的文章。在欧式空间中使用的卷积具有平移不变性,权值共享,局部连接,分层次表达的特点,但是图结构是一种非欧式空间中的关系型结构,所以其不存在平移不变性(每个节点的周围邻居数不固定),导致图网络无法使用卷积。作者提出了两种构造,一种基于空间域的层次聚类,另一种基于图拉普拉斯算子的频谱。 作者通过实验表明,对于低维图,使用这两种方法可以学习具有与输入大小无关的卷积层,从而可以形成有效的深度架构。

基于空域的层次结构

定义图 G G G 表示为 G = ( Ω , W ) G = (\Omega,W) G=(Ω,W),其中 Ω \Omega Ω 表示图中的点集,大小为 m m m W W W 是一个大小为 m × m m\times m m×m 的对称非负方阵,表示带权的邻接矩阵。

根据边权的大小,可以定义阈值为 δ \delta δ 的直接邻域

N δ ( j ) = { i ∣ W i j > δ } N_\delta(j) = \{i |W_{ij}>\delta \} Nδ(j)={iWij>δ}

在欧式空间上,CNN通过卷积和池化进行层次化降维,这一操作可以看作是每层将输入的特征图,在一定的聚类划分下,对每一个cluster输出单一的特征。作者仿照该方法进行图卷积,考虑 K K K 层图卷积结构,其中 Ω 0 = Ω \Omega_0 = \Omega Ω0=Ω Ω k \Omega_k Ωk 是对 Ω k − 1 \Omega_{k-1} Ωk1 划分为 d k d_k dk 个集群。对于第 k k k 层的图卷积操作,输入的特征通道数为 f k − 1 f_{k-1} fk1,输出的特征通道数为 f k f_k fk 。对于输入的特征图,使用 x k = [ x k , 1 , . . . , x k , f k − 1 ] T x_k = [x_{k,1},...,x_{k,f_{k-1}}]^\text T xk=[xk,1,...,xk,fk1]T 表示,输入矩阵的尺寸为 d k − 1 × f k − 1 d_{k-1}\times f_{k-1} dk1×fk1 ,那么输出特征定义为

x k + 1 , j = L k ⋅ h ( ∑ i = 1 f k − 1 F k , i , j x k , i ) x_{k+1,j} = L_k\cdot h(\sum_{i=1}^{f_{k-1}}F_{k,i,j}x_{k,i}) xk+1,j=Lkh(i=1fk1Fk,i,jxk,i)

其中 h h h 表示非线性激活函数, F k , i , j F_{k,i,j} Fk,i,j 是一个大小为 d k − 1 × d k − 1 d_{k-1}\times d_{k-1} dk1×dk1 的稀疏矩阵,非零元的位置由 N k \mathcal N_k Nk 给出, N k \mathcal N_k Nk 定义为

N k = { N k , i ∣ i = 1... d k − 1 } \mathcal N_k = \{\mathcal N_{k,i}|i=1...d_{k-1}\} Nk={Nk,ii=1...dk1}

表示在 Ω k − 1 \Omega_{k-1} Ωk1 中所有点对应的领域。

在这里插入图片描述
而矩阵 W k W_k Wk 的迭代式定义为

A k ( i , j ) = ∑ s ∈ Ω k ( i ) ∑ t ∈ Ω k ( j ) W k − 1 ( s , t ) W k = rownormalize ( A k ) \\A_k(i,j) = \sum_{s\in\Omega_{k}(i)}\sum_{t\in\Omega_k(j)}W_{k-1}(s,t) \\W_k = \text{rownormalize}(A_k) Ak(i,j)=sΩk(i)tΩk(j)Wk1(s,t)Wk=rownormalize(Ak)

基于频域的结构

图拉普拉斯矩阵定义为 L = D − W L = D-W L=DW,使用 V V V 表示矩阵 L L L 的特征向量,那么图卷积在频域上的定义为

x k + 1 , j = h ( V ∑ i = 1 f k − 1 F k , i , j V T x k , i )      ( j = 1... f k ) x_{k+1,j} = h(V\sum_{i=1}^{f_{k-1}}F_{k,i,j} V^Tx_{k,i})\;\;(j=1...f_k) xk+1,j=h(Vi=1fk1Fk,i,jVTxk,i)(j=1...fk)

大多数情况下,只有前d个特征向量起作用,因此可以使用 V d V_d Vd 代替矩阵 V V V,即 V d = V [ : , : d ] V_d = V[:,:d] Vd=V[:,:d]

总结

GCN可以看作是该篇论文提出的两种结构的特例,对于空域结构, F k , i , j F_{k,i,j} Fk,i,j 仅在一阶邻居处非零,参数共享;对于频域结构,可以看作 d = 1 d=1 d=1 ,即频域结构中的一阶近似,为之后提出的GCN奠定了理论基础。而作者从流形的角度进行实验开阔了图神经网络的应用场景。

### 回答1: 这句话的意思是,使用快速局部谱滤波在图上进行卷积神经网络。在这个过程中,图像被表示为一个图,节点表示像素,边表示它们之间的关系。然后使用谱滤波器来处理这些图像,以便更好地捕捉它们之间的关系。由于使用了快速局部谱滤波器,因此可以有效地减少计算量,并提高计算效率。 ### 回答2: 卷积神经网络(CNN)在计算机视觉领域中被广泛应用,而针对图像上的卷积运算也得到了很好的改进。但是,对于图结构数据,卷积操作却变得更加困难。近年来出现了一些新的关于卷积神经网络用于图结构数据的方法,如基于图卷积网络(GCN)等。本文要介绍的“convolutional neural networks on graphs with fast localized spectral filtering”,即基于图谱的局部快速滤波的卷积神经网络,是另一种针对图结构数据的卷积方法。 传统的CNN通常采用局部的、线性的滤波器来提取图像的空间特征。而对于图结构数据,由于图上两个节点之间的关系是任意的,以及节点的特征不一定是有序的,因此无法直接地应用局部的卷积操作。但是,与图结构数据相对应的,是一个特殊的函数——图谱,它提供了丰富的图结构信息。 图谱(即拉普拉斯矩阵)是一个对称的稀疏矩阵,反映了图结构和节点特征之间的关系。将图谱的特征值和特征向量作为滤波器,就可以将图上的卷积操作转化为图谱卷积的形式。尤其是,利用局部滤波器就可以实现对图上节点嵌入向量的快速计算。 该方法涉及到了图谱嵌入、拉普拉斯矩阵、小批量图谱卷积核的设计等方面的内容。其中,图谱嵌入是将图结构数据映射为一个低维向量表示的过程,具有降维和特征抽取的作用;拉普拉斯矩阵是反应了图结构的一类矩阵,与图谱嵌入有密切关系;在卷积核设计方面,考虑到图结构的多样性和规模,将设计小批量卷积核进行快速的局部卷积操作,以提高计算效率。 该方法的优点在于,可以处理任意结构的图像和非图像数据,并且具有较好的鲁棒性和泛化能力。是否可以进一步提高计算效率,仍需更多的研究来探索。 ### 回答3: 卷积神经网络是一种基于多层神经元的深度学习算法,被用于图像、文本和声音等领域。最近,学者们开始研究如何将卷积神经网络应用于图形数据,如社交网络、交通网络和化学分子。其中,卷积神经网络特别适合处理图形数据,因为它可以学习局部特征,并保持局部空间关系。因此,卷积神经网络在图形任务上取得了许多优秀成果。 然而,之前的卷积神经网络模型存在一些不足,比如缺乏设计可解释性、效率低下、过度拟合等。为了解决这些问题,一种新的基于谱滤波的图形卷积神经网络被提出,即convolutional neural networks on graphs with fast localized spectral filtering。 这种方法在卷积层引入了局部谱滤波器,能够提高模型的效率和可解释性。谱滤波器可以学习图形数据的空间结构特征,能够捕捉节点之间的相邻关系和密度。而局部谱滤波器则针对每个节点的邻居子图进行滤波,使模型能够更好地识别图形数据中的局部特征。 此外,该方法还能够解决过拟合问题。过拟合是神经网络经常遇到的问题,即模型在训练集上表现极佳,但在测试集上表现不佳。谱滤波器可以在输入数据中学习的特征不够显著时,利用图形数据的全局谱信息进行补充,并减少过拟合的发生。 总之,convolutional neural networks on graphs with fast localized spectral filtering是一种高效、可解释、稳定的图形卷积神经网络。此方法在实际应用中有很大的潜力,如社交网络分析、城市交通预测、生物学和化学分子分析等领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值