91. 解码方法
难度:中等
一条包含字母 A-Z 的消息通过以下映射进行了 编码 :
'A' -> 1
'B' -> 2
...
'Z' -> 26
要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,"11106" 可以映射为:
"AAJF",将消息分组为(1 1 10 6)"KJF",将消息分组为(11 10 6)
注意,消息不能分组为 (1 11 06) ,因为 "06" 不能映射为 "F" ,这是由于 "6" 和 "06" 在映射中并不等价。
给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。
题目数据保证答案肯定是一个 32 位 的整数。
示例 1:
输入:s = "12"
输出:2
解释:它可以解码为 "AB"(1 2)或者 "L"(12)。
示例 2:
输入:s = "226"
输出:3
解释:它可以解码为 "BZ" (2 26), "VF" (22 6), 或者 "BBF" (2 2 6) 。
示例 3:
输入:s = "0"
输出:0
解释:没有字符映射到以 0 开头的数字。
含有 0 的有效映射是 'J' -> "10" 和 'T'-> "20" 。
由于没有字符,因此没有有效的方法对此进行解码,因为所有数字都需要映射。
示例 4:
输入:s = "06"
输出:0
解释:"06" 不能映射到 "F" ,因为字符串含有前导 0("6" 和 "06" 在映射中并不等价)。
提示:
1 <= s.length <= 100s只包含数字,并且可能包含前导零。
解答:
class Solution {
//动态规划
//时间复杂度O(N),空间复杂度O(N)
public int numDecodings(String s) {
int n = s.length();
int[] f = new int[n + 1];
f[0] = 1;
for(int i = 1; i <= n; i++){
if(s.charAt(i - 1) != '0') f[i] += f[i - 1];
if(i > 1 && s.charAt(i - 2) != '0' && (s.charAt(i - 2) - '0') * 10 + (s.charAt(i - 1) - '0') <= 26){
f[i] += f[i - 2];
}
}
return f[n];
}
}
class Solution {
//动态规划
//时间复杂度O(N),空间复杂度O(1)
public int numDecodings(String s) {
int n = s.length();
int a = 0;
int b = 1;
int c = 0;
for(int i = 1; i <= n; i++){
c = 0;
if(s.charAt(i - 1) != '0') c += b;
if(i > 1 && s.charAt(i - 2) != '0' && (s.charAt(i - 2) - '0') * 10 + (s.charAt(i - 1) - '0') <= 26){
c += a;
}
a = b;
b = c;
}
return c;
}
}
参考自:
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/decode-ways/solution/jie-ma-fang-fa-by-leetcode-solution-p8np/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
本文介绍了一种计算字符串解码方法总数的算法。通过动态规划方法解决了特定编码规则下,如何计算不同解码方式的问题。文章提供了两种实现方案,一种使用O(N)的空间复杂度,另一种则优化至O(1)的空间复杂度。
748

被折叠的 条评论
为什么被折叠?



