前言:这个专栏主要讲述动态规划算法,所以下面题目主要也是这些算法做的
我讲述题目会把讲解部分分为3个部分:
1、题目解析
2、算法原理思路讲解
3、代码实现
解码方法
题目链接:解码方法
题目
一条包含字母 A-Z
的消息通过以下映射进行了 编码 :
'A' -> "1" 'B' -> "2" ... 'Z' -> "26"
要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,"11106"
可以映射为:
"AAJF"
,将消息分组为(1 1 10 6)
"KJF"
,将消息分组为(11 10 6)
注意,消息不能分组为 (1 11 06)
,因为 "06"
不能映射为 "F"
,这是由于 "6"
和 "06"
在映射中并不等价。
给你一个只含数字的 非空 字符串 s
,请计算并返回 解码 方法的 总数 。
题目数据保证答案肯定是一个 32 位 的整数。
示例 1:
输入:s = "12" 输出:2 解释:它可以解码为 "AB"(1 2)或者 "L"(12)。
示例 2:
输入:s = "226" 输出:3 解释:它可以解码为 "BZ" (2 26), "VF" (22 6), 或者 "BBF" (2 2 6) 。
示例 3:
输入:s = "06" 输出:0 解释:"06" 无法映射到 "F" ,因为存在前导零("6" 和 "06" 并不等价)。
提示:
1 <= s.length <= 100
s
只包含数字,并且可能包含前导零。
解法
题目解析
题目意思很简单
给你一个只含数字的 非空 字符串 s
,请计算并返回 解码 方法的 总数 。
示例 :
输入:s = "226" 输出:3 解释:它可以解码为 "BZ" (2 26), "VF" (22 6), 或者 "BBF" (2 2 6) 。
算法原理讲解
我们这题使用动态规划,我们做这类题目可以分为以下五个步骤
- 状态显示
- 状态转移方程
- 初始化(防止填表时不越界)
- 填表顺序
- 返回值
- 状态表示
dp[i] 表示 :字符串中 [0 , i] 区间上,⼀共有多少种编码⽅法。
- 状态转移方程
定义好状态表示,我们就可以分析 i 位置的 dp 值,如何由「前⾯」或者「后⾯」的信息推导出来。关于 i 位置的编码状况,我们可以分为下⾯两种情况:
- 让 i 位置上的数单独解码成⼀个字母;
- 让 i 位置上的数与 i - 1 位置上的数结合,解码成⼀个字母。
下⾯我们就上面的两种解码情况,继续分析:
- 让 i 位置上的数单独解码成⼀个字⺟,就存在「解码成功」和「解码失败」两种情况:
- 解码成功:当 i 位置上的数在 [1, 9] 之间的时候,说明 i 位置上的数是可以单独解码的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 1] 区间上的解码方法。因为 [0, i - 1] 区间上的所有解码结果,后⾯填上⼀个 i 位置解码后的字⺟就可以了。此时 dp[i] = dp[i - 1] ;
- 解码失败:当 i 位置上的数是 0 的时候,说明 i 位置上的数是不能单独解码的,那么此时 [0, i] 区间上不存在解码⽅法。因为 i 位置如果单独参与解码,但是解码失败了,那么前⾯做的努力就全部白费了。此时 dp[i] = 0 。
- 让 i 位置上的数与 i - 1 位置上的数结合在⼀起,解码成⼀个字⺟,也存在「解码成功」和「解码失败」两种情况:
- 解码成功:当结合的数在 [10, 26] 之间的时候,说明 [i - 1, i] 两个位置是可以解码成功的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 2 ] 区间上的解码方法,原因同上。此时 dp[i] = dp[i - 2] ;
- 解码失败:当结合的数在 [0, 9] 和 [27 , 99] 之间的时候,说明两个位置结合后解码失败(这⾥⼀定要注意 00 01 02 03 04 ...... 这⼏种情况),那么此时 [0, i] 区间上的解码⽅法就不存在了,原因依旧同上。此时 dp[i] = 0 。
综上所述: dp[i] 最终的结果应该是上⾯四种情况下,解码成功的两种的累加和(因为我们关⼼的是解码⽅法,既然解码失败,就不⽤加⼊到最终结果中去),因此可以得到状态转移⽅程( dp[i] 默认初始化为 0 ):
- 当 s[i] 上的数在 [1, 9] 区间上时: dp[i] += dp[i - 1] ;
- 当 s[i - 1] 与 s[i] 上的数结合后,在 [10, 26] 之间的时候: dp[i] += dp[i - 2] ;
如果上述两个判断都不成立,说明没有解码⽅法, dp[i] 就是默认值 0 。
- 初始化
由于可能要⽤到 i - 1 以及 i - 2 位置上的 dp 值,因此要先初始化「前两个位置」。
- 初始化 dp[0]
- 当 s[0] == ' 0 ' 时,没有编码⽅法,结果 dp[0] = 0 。
- 当 s[0] != ' 0 ' 时,能编码成功, dp[0] = 1。
- 初始化 dp[1]
- 当 s[1] 在 [1,9] 之间时,能单独编码,此时 dp[1] += dp[0] (原因同上, dp[1] 默认为 0 )。
- 当 s[0] 与 s[1] 结合后的数在 [10, 26] 之间时,说明在前两个字符中,⼜有⼀种编码方式,此时 dp[1] += 1。
- 填表顺序
毫⽆疑问是「从左往右」
- 返回值
应该返回 dp[n - 1] 的值,表⽰在 [0, n - 1] 区间上的编码方法。
代码实现
class Solution {
public:
int numDecodings(string s)
{
int n = s.size();
vector<int> dp(n); // 创建⼀个 dp表
// 初始化前两个位置
dp[0] = s[0] != '0';
if(n == 1) return dp[0]; // 处理边界情况
if(s[1] <= '9' && s[1] >= '1')
{
dp[1] += dp[0];
}
int t = (s[0] - '0') * 10 + s[1] - '0';
if(t >= 10 && t <= 26)
{
dp[1] += 1;
}
for(int i = 2; i < n; i++)
{
// 如果单独编码
if(s[i] <= '9' && s[i] >= '1')
{
dp[i] += dp[i - 1];
}
// 如果和前⾯的⼀个数联合起来编码
int t = (s[i - 1] - '0') * 10 + s[i] - '0';
if(t >= 10 && t <= 26)
{
dp[i] += dp[i - 2];
}
}
// 返回结果
return dp[n - 1];
}
};