珍珠项链(洛谷-P2768)(Dp矩阵加速)

8 篇文章 0 订阅
5 篇文章 0 订阅

文章目录

题目

Luogu
题目大意:
k k k 种珍珠,每种珍珠都要用上,问能做出长度[1,2,…,N]的首饰的方案数,答案模 1234567891 1234567891 1234567891
T &lt; = 10 , 1 &lt; = N &lt; = 1000000000 , 0 &lt; = K &lt; = 30 T &lt;=10, 1&lt;= N&lt;= 1000000000, 0&lt;= K&lt;= 30 T<=101<=N<=1000000000,0<=K<=30

思路

我们定义: f [ i ] [ j ] : 前 i 个 位 置 用 j 种 珍 珠 的 方 案 数 f[i][j]:前i个位置用j种珍珠的方案数 f[i][j]:ij
于是有转移方程式:
f [ i ] [ j ] = f [ i − 1 ] [ j ] ∗ j + f [ i − 1 ] [ j − 1 ] ∗ ( k − j ) f[i][j]=f[i-1][j]*j+f[i-1][j-1]*(k-j) f[i][j]=f[i1][j]j+f[i1][j1](kj)
其中 f [ 0 ] [ 0 ] = 1 f[0][0]=1 f[0][0]=1
那么 A n s = ∑ i = 1 n f [ i ] [ k ] Ans=\sum_{i=1}^{n}f[i][k] Ans=i=1nf[i][k]
发现这样每次 i i i 只会+1,并且转移时系数和 i i i 没太大关系,于是可以考虑矩阵加速
我们记 a n s i = ∑ j = 1 i f [ j ] [ k ] ans_i=\sum_{j=1}^{i}f[j][k] ansi=j=1if[j][k]
那么可以得到转换矩阵:
( f [ i − 1 ] [ 0 ] f [ i − 1 ] [ 1 ] ⋯ f [ i − 1 ] [ k ] a n s i − 2 ) ∗ ( 0 k 0 ⋯ 0 0 0 0 1 k − 1 ⋯ 0 0 0 0 0 2 ⋯ 0 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 0 0 0 ⋯ k − 1 1 0 0 0 0 ⋯ 0 k 1 0 0 0 ⋯ 0 0 1 ) = ( f [ i ] [ 0 ] f [ i ] [ 1 ] ⋯ f [ i ] [ k ] a n s i − 1 ) \left( \begin{matrix} f[i-1][0]&amp;f[i-1][1]&amp;\cdots&amp;f[i-1][k]&amp;ans_{i-2} \end{matrix} \right) * \left( \begin{matrix} 0&amp;k&amp;0&amp;\cdots&amp;0&amp;0&amp;0\\ 0&amp;1&amp;k-1&amp;\cdots&amp;0&amp;0&amp;0\\ 0&amp;0&amp;2&amp;\cdots&amp;0&amp;0&amp;0\\ \vdots&amp;\vdots&amp;\vdots&amp;\ddots&amp;\vdots&amp;\vdots&amp;\vdots\\ 0&amp;0&amp;0&amp;\cdots&amp;k-1&amp;1&amp;0\\ 0&amp;0&amp;0&amp;\cdots&amp;0&amp;k&amp;1\\ 0&amp;0&amp;0&amp;\cdots&amp;0&amp;0&amp;1\\ \end{matrix} \right) \quad= \left( \begin{matrix} f[i][0]&amp;f[i][1]&amp;\cdots&amp;f[i][k]&amp;ans_{i-1} \end{matrix} \right) (f[i1][0]f[i1][1]f[i1][k]ansi2)000000k100000k12000000k1000001k0000011=(f[i][0]f[i][1]f[i][k]ansi1)
那么记转换矩阵为 A A A ,那么 A n + 1 A^{n+1} An+1 的右上角即为答案
时间复杂度: O ( k 3 l o g n ) O(k^3log_n) O(k3logn)

代码

#include<set>  
#include<map>  
#include<stack>  
#include<cmath>  
#include<cstdio>  
#include<queue>  
#include<vector>  
#include<climits>  
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;     
LL read(){     
    LL f=1,x=0;char s=getchar();        
    while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}       
    while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}     
    return x*f;    
}
#define MAXN 32
#define INF 0x3f3f3f3f
#define Mod 1234567891
struct Matrix{
	int r,c;
	LL m[MAXN+5][MAXN+5];
	Matrix(){}
	Matrix(int R,int C){r=R,c=C,memset(m,0,sizeof(m));}
	Matrix operator * (Matrix a){
		Matrix b(r,a.c);
		for(int i=1;i<=r;i++)
			for(int j=1;j<=a.c;j++)
				for(int k=1;k<=c;k++)
					b.m[i][j]=(b.m[i][j]+m[i][k]*a.m[k][j]%Mod)%Mod;
		return b;
	}
	void print(){
		for(int i=1;i<=r;i++)
			for(int j=1;j<=c;j++)
				printf("%lld",m[i][j]),putchar(j==c?'\n':' ');
		return ;
	}
};
Matrix Pow(Matrix x,int y){
	Matrix ret(x.r,x.c);
	for(int i=1;i<=x.r;i++)
		ret.m[i][i]=1;
	while(y){
		if(y&1) ret=ret*x;
		x=x*x;
		y>>=1;
	}
	return ret;
}
Matrix A,B;
int main(){
	int T=read();
	while(T--){
		int n=read(),k=read();
		A=B=Matrix();
		A.r=A.c=k+2;
		for(int i=2;i<=k+1;i++)
			A.m[i][i]=i-1,A.m[i-1][i]=k-i+2;
		A.m[k+1][k+2]=1,A.m[k+2][k+2]=1;
		A=Pow(A,n+1);//ans[-1]...ans[n]
		B.r=1,B.c=k+2;
		B.m[1][1]=1;
		B=B*A;
		printf("%lld\n",B.m[1][k+2]);
	}
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值