之前一段时间,由于项目需求,将深度学习框架从Caffe切换到Tensorflow,从ubuntu下模型训练到模型移植到windows端推理,即从
Caffe:Ubuntu下训练,windows端推理,采用C++调用python的方式工程化
切换为:
Tensorflow:Ubuntu下训练,windows端推理,采用Tensorflow C++接口的方式工程化(不依赖于python环境)
Tensorflow版本选择
笔者选择Tensorflow版本主要是项目用的是CUDA8.0,所以选择最高支持CUDA8.0的tensorflow1.4-gpu版本,可参考Tensorflow官网版本:
本文不介绍windows下编译tensorflow.dll的过程,有需要编译tensorflow.dll的童鞋,一定要参考上面的编译器版本和编译工具版本,即:
VS版本一定要选择 VS2015 update3的版本,选错VS版本编译会有很多坑(非常重要)
科学上网(编译过程中需要下载,否则编译不成功)
关于编译tensorflow.dll成功以后,tensorflow-1.4源码下有调用的案例,即官方案例:
下载tensorflow-1.4源码以后,官方案例在tensorflow-1.4.0/tensorflow/examples目录下,笔者参考的是目标检测的官方案例之一:multibox_detector,可以参考tensorflow-1.4.0/tensorflow/examples/multibox_detector/main.cc的代码,笔者这边由于测试时用到的图像有bmp格式的,所以读取图像部分做了一定修改(用opencv读取图像),以下是tensorflow训练faster_rcnn的模型在windows下工程化代码:
#include <io.h>
#include <sstream>
#include <map>
// windows下运行需要添加
#define COMPILER_MSVC
#define NOMINMAX
#define PLATFORM_WINDOWS
#include <fstream>
#include <utility>
// 这里包含tensorflow头文件
#include "tensorflow/cc/ops/const_op.h"
#include "tensorflow/cc/ops/image_ops.h"
#include "tensorflow/cc/ops/standard_ops.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/graph/default_device.h"
#include "tensorflow/core/graph/graph_def_builder.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/lib/io/path.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/init_main.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/public/session.h