7.4、格:基本定义和属性

7.4、格:基本定义和属性

在阅读了7.1和7.2节中的例子,并在7.3节中复习了向量空间的基本性质之后,读者就不会对格及其性质的正式定义感到惊讶了。

定义 设 v 1 , . . . , v n ∈ R m v_{1},..., v_{n} \in R^{m} v1,...,vnRm 是一组线性无关向量。由 v 1 , . . . , v n v_{1},..., v_{n} v1,...,vn 生成的格 L 是 v 1 , . . . , v n v_{1},..., v_{n} v1,...,vn 的系数在 Z 中的线性组合的集合:(意思是:格中向量前面的系数是整数)
L = { a 1 v 1 + a 2 v 2 + . . . + a n v n : a 1 , a 2 , . . . , a n ∈ Z } L=\{a_{1}v_{1}+a_{2}v_{2}+...+a_{n}v_{n}:a_{1},a_{2},...,a_{n} \in Z\} L={a1v1+a2v2+...+anvn:a1,a2,...,anZ}
L的一组基是生成L的任意线性无关向量的集合。任意两个这样的集合有相同数量的元素。L的维数是L的一组基中向量的个数。

假设 v 1 , . . . , v n v_{1},..., v_{n} v1,...,vn 是格 L 的一个基,而 w 1 , . . . , w n ∈ L w_{1},..., w_{n} \in L w1,...,wnL 是 L 中的另一个向量集合。就像我们对向量空间所做的那样,我们可以把每个 w j w_{j} wj 写成基向量的线性组合:
w 1 = a 11 v 1 + a 12 v 2 + . . . + a 1 n v n , w 2 = a 21 v 1 + a 22 v 2 + . . . + a 2 n v n , . . . . . . w n = a n 1 v 1 + a n 2 v 2 + . . . + a n n v n , w_{1}=a_{11}v_{1}+a_{12}v_{2}+...+a_{1n}v_{n},\\ w_{2}=a_{21}v_{1}+a_{22}v_{2}+...+a_{2n}v_{n},\\ ...... \\ w_{n}=a_{n1}v_{1}+a_{n2}v_{2}+...+a_{nn}v_{n},\\ w1=a11v1+a12v2+...+a1nvn,w2=a21v1+a22v2+...+a2nvn,......wn=an1v1+an2v2+...+annvn,
但由于我们现在处理的是格,我们知道所有的 a i j a_{ij} aij 系数都是整数。

假设我们用wj来表示vi。这涉及到矩阵的求逆:
A = ( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ) A=\begin{pmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ... & ... & ...\\ a_{n1} & a_{n2} & ... & a_{nn} \end{pmatrix} A= a11a21...an1a12a22...an2............a1na2n...ann
注意,我们需要vi是使用整数系数的wj的线性组合,所以我们需要 A − 1 A^{-1} A1​的项是整数项。因此(det(A),A矩阵的行列式值)
1 = d e t ( I ) = d e t ( A A − 1 ) = d e t ( A ) d e t ( A − 1 ) 1 = det(I)=det(AA^{-1})=det(A)det(A^{-1}) 1=det(I)=det(AA1)=det(A)det(A1)
其中,det(A) 和 det( A − 1 A^{-1} A1) 都是整数,所以我们必须有 det(A)= ±1。 相反,如果det(A)=±1,则伴随矩阵的理论告诉我们 A − 1 A^{-1} A1​确实有整数项。(见练习7.10。)这证明了以下有用的结果。

命题 7.14. 格 L 的任意两个基都与一个具有整数系数且行列式等于 ±1 的矩阵相关。

为了计算的目的,使用向量具有整数坐标的格通常是很方便的。例如,Zn 是由所有具有整数坐标的向量组成的格。
Z n = { ( x 1 , x 2 , . . . , x n ) : x 1 , . . . , x n ∈ Z } Z^{n}=\{(x_{1},x_{2},...,x_{n}):x_{1},...,x_{n} \in Z \} Zn={(x1,x2,...,xn):x1,...,xnZ}
定义。 积分(或整数)格是指所有向量的坐标都是整数的格。等价地,整数格是某个 m≥1 的 Z m Z^{m} Zm​ 的可加子群。

例7.15。 考虑由三个向量生成的三维格 L ⊂ R 3 L\subset R^{3} LR3
v 1 = ( 2 , 1 , 3 ) , v 2 = ( 1 , 2 , 0 ) , v 3 = ( 2 , − 3 , − 5 ) v_{1}=(2,1,3), \qquad v_{2}=(1,2,0), \qquad v_{3}=(2,-3,-5) v1=(2,1,3),v2=(1,2,0),v3=(2,3,5)
用v1,v2,v3作为矩阵的行很方便,
A = ( 2 1 3 1 2 0 2 − 3 − 5 ) A=\begin{pmatrix} 2 & 1 & 3\\ 1 & 2 & 0\\ 2 & -3 & -5 \end{pmatrix} A= 212123305
我们在 L 中创建三个新向量,公式为:
w 1 = v 1 + v 3 , w 2 = v 1 − v 2 + 2 v 3 , w 3 = v 1 + 2 v 2 w_{1}=v_{1}+v_{3}, \qquad w_{2}=v_{1}-v_{2}+2v_{3}, \qquad w_{3}=v_{1}+2v_{2} w1=v1+v3,w2=v1v2+2v3,w3=v1+2v2
这等价于矩阵A在左边乘以这个矩阵
U = ( 1 0 1 1 − 1 2 1 2 0 ) U=\begin{pmatrix} 1 & 0 & 1\\ 1 & -1 & 2\\ 1 & 2 & 0 \end{pmatrix} U= 111012120
我们发现w1,w2,w3是矩阵的行
B = U A = ( 4 − 2 − 2 5 − 7 − 7 4 5 3 ) B=UA=\begin{pmatrix} 4 & -2 & -2\\ 5 & -7 & -7\\ 4 & 5 & 3 \end{pmatrix} B=UA= 454275273
矩阵 U 的行列式为-1,因此向量 w1、w2、w3 也是 L 的基。U 的逆是:
U − 1 = ( 4 − 2 − 1 − 2 1 1 − 3 2 1 ) U^{-1}=\begin{pmatrix} 4 & -2 & -1\\ -2 & 1 & 1\\ -3 & 2 & 1 \end{pmatrix} U1= 423212111
U − 1 U^{-1} U1 的各行则告诉我们如何用 wj 的线性组合来表示 vi
v 1 = 4 w 1 − 2 w 2 − w 3 , v 2 = − 2 w 1 + w 2 + w 3 , v 3 = − 3 w 1 + 2 w 2 + w 3 v_{1}=4w_{1}-2w_{2}-w_{3}, \qquad v_{2}=-2w_{1}+w_{2}+w_{3}, \qquad v_{3}=-3w_{1}+2w_{2}+w_{3} v1=4w12w2w3,v2=2w1+w2+w3,v3=3w1+2w2+w3
备注 7.16. 如果 L ⊂ R m R^{m} Rm​ 是维数为 n 的格,那么 L 的基可以写成 n-by-m 矩阵 A 的行,即 n 行 m 列的矩阵。将左边的矩阵 A 乘以 n-by-n 矩阵 U,U 具有整数条目和行列式 ±1,即可得到 L 的新基。它是具有整数条目的矩阵群,其逆矩阵也具有整数条目。

还有一种更抽象的定义格的方法,它将几何和代数交织在一起。

定义。 如果 R m R^{m} Rm 的一个子集 L 在加法和减法下是封闭的,那么它就是一个可加子群。如果有一个正常数 ϵ > 0 \epsilon >0 ϵ>0,且具有以下性质,则称为离散可加子群:对于每个 v∈L,
L ∩ { w ∈ R m : ∥ v − w ∥ < ϵ } = v L\cap \{w \in R^{m} :\parallel v-w \parallel <\epsilon \}={v} L{wRm:∥vw∥<ϵ}=v
换句话说,如果你取L中的任意向量v,画一个以v为半径的实心球,那么在球内就没有L的其他点了。

定理7.17。 R m R^{m} Rm​的子集是格当且仅当它是一个离散可加子群。

证据。我们把证明留给读者;参见练习7.9。

格类似于向量空间,只不过它是由其基向量的所有线性组合使用整数系数生成的,而不是使用任意的实系数。通常,我们可以把格看作是 Rm 中点的有序排列,在每个向量的顶端放置一个点。图 7.1 举例说明了 R2 中的格。
在这里插入图片描述

定义。 设 L 是维数为 n 的格,设 v1, v2,…, vn 是 L 的基。与此基础相对应的 L 的基础域(或基础平行四边形)是集合
F ( v 1 , . . . , v n ) = t 1 v 1 + t 2 v 2 + . . . + t n v n : 0 ≤ t < 1 . ( 7.9 ) \mathcal{F}(v_{1},...,v_{n})={t_{1}v_{1}+t_{2}v_{2}+...+t_{n}v_{n}:0\le t<1}. \qquad (7.9) F(v1,...,vn)=t1v1+t2v2+...+tnvn:0t<1.(7.9)
图 7.1 中的阴影部分表示维数为 2 的基域。下一个结果说明了基域在研究格中的重要性。

命题 7.18. L ⊂ R n L\subset R^{n} LRn 是维数为 n 的格,设 F \mathcal{F} F 是 L 的基域。那么,每个向量 w ∈ R n w\in R^{n} wRn 都可以写成下面的形式:
w = t + v 对于唯一的 t ∈ F 和唯一的 v ∈ L 。 w=t+v \qquad 对于唯一的t \in \mathcal{F} 和唯一的v \in L。 w=t+v对于唯一的tF和唯一的vL
等价地,平移基域的联合:
F + v = { t + v : t ∈ F } \mathcal{F} +v = \{t+v:t \in \mathcal{F} \} F+v={t+v:tF}
随着 v 在格 L 中的向量范围内的变化,正好覆盖 Rn;见图 7.2。
在这里插入图片描述

证明 设 v1,…, vn 是给出基域 F 的 L 的一个基,那么 v1,…, vn 在 Rn 中是线性无关的,所以它们是 Rn 的一个基。这意味着任何 w∈Rn 都可以写成以下形式
w = α 1 v 1 + α 2 v 2 + . . . + α n v n 对于一些 α 1 , . . . , α n ∈ R w=\alpha _{1}v_{1}+\alpha _{2}v_{2}+...+\alpha _{n}v_{n} \qquad 对于一些\alpha_{1},...,\alpha_{n} \in R w=α1v1+α2v2+...+αnvn对于一些α1,...,αnR
我们现在把每个 α i \alpha _{i} αi写成:
α i = t i + a i 其中 0 ≤ t i < 1 和 a i ∈ Z \alpha _{i}=t_{i}+a_{i} \qquad 其中0 \le t_{i}<1 和a_{i} \in Z αi=ti+ai其中0ti<1aiZ
可以得到:
在这里插入图片描述

这表明w可以写成所需的形式。

然后假设 w = t + v = t ′ + v ′ w=t+v=t^{'}+v^{'} w=t+v=t+v有两种表示形式,即F中的一个向量和L中的一个向量,可以得到:
( t 1 + a 1 ) v 1 + ( t 2 + a 2 ) v 2 + . . . + ( t n + a n ) v n = ( t 1 ′ + a 1 ′ ) v 1 ′ + ( t 2 ′ + a 2 ′ ) v 2 ′ + . . . + ( t n ′ + a n ′ ) v n ′ (t_{1}+a_{1})v_{1}+(t_{2}+a_{2})v_{2}+...+(t_{n}+a_{n})v_{n}=(t_{1}^{'}+a_{1}^{'})v_{1}^{'}+(t_{2}^{'}+a_{2}^{'})v_{2}^{'}+...+(t_{n}^{'}+a_{n}^{'})v_{n}^{'} (t1+a1)v1+(t2+a2)v2+...+(tn+an)vn=(t1+a1)v1+(t2+a2)v2+...+(tn+an)vn
由于 v1、…、vn 是线性无关的,因此可以得出:
t i + a i = t i ′ + a i ′ 对于所有的 i = 1 , 2 , . . . , n t_{i}+a_{i}=t_{i}^{'}+a_{i}^{'} \qquad 对于所有的 i=1,2,...,n ti+ai=ti+ai对于所有的i=1,2,...,n
所以:
t i − t i ′ = a i ′ − a i ∈ Z t_{i}-t_{i}^{'}=a_{i}^{'}-a_{i} \in Z titi=aiaiZ
是整数。但我们也知道, t i t_{i} ti t i ′ t_{i}^{'} ti 都大于或等于 0 且严格小于 1,因此 t i − t i ′ t_{i}-t_{i}^{'} titi 是整数的唯一可能是 t i = t i ′ t_{i}=t_{i}^{'} ti=ti。然后得到:
v = w − t = w − t ′ = v ′ v=w-t=w-t^{'}=v^{'} v=wt=wt=v
这就证明了t∈F和v∈L是唯一由w决定的。

事实证明,格 L 的所有基域都具有相同的体积。对于 R n R^{n} Rn 中维数为 n 的格,我们将在后面证明这一点(推论 7.22)。基域的体积被证明是格的一个极其重要的不变量。

定义。 设 L 是一个 n 维的格,设 F 是 L 的基域,则 F 的 n 维体积称为 L 的行列式(有时也称为 L 的共体积)。用 det(L) 表示。

如果把基向量 v1、…、vn 视为描述平行六面体 F 边的给定长度的向量,那么对于给定长度的基向量,当向量之间成对正交时,体积最大。由此可以得到格的行列式的如下重要上界。

命题 7.19(哈达玛不等式)。设 L 是格,取 L 的任意基 v1,…, vn,设 F 是 L 的基域,则
d e t   L = V o l ( F ) ≤ ∥ v 1 ∥ ∥ v 2 ∥ . . . ∥ v n ∥ det\ L=Vol(\mathcal{F})\le \parallel v_{1} \parallel \parallel v_{2} \parallel...\parallel v_{n} \parallel det L=Vol(F)≤∥v1∥∥v2...vn
基越接近正交,Hadamard 不等式 (7.10) 就越接近等式。

如果格 L 的维数与其周围空间相同,即 L 包含在 Rn 中且 L 的维数为 n,则计算格 L 的行列式相当容易。请参见练习 7.14,学习如何在一般情况下计算格的行列式。

命题 7.20。 设 L ⊂ Rn 是维数为 n 的格,设 v1, v2,…, vn 是 L 的基,设 F = F(v1,…, vn) 是由 (7.9) 定义的相关基域。将第 i 个基向量的坐标写为:
v i = ( r i 1 , r i 2 , . . . , r i n ) v_{i}=(r_{i1},r_{i2},...,r_{in}) vi=(ri1,ri2,...,rin)
用vi的坐标作为矩阵的行,
F = F ( v 1 , . . . , v n ) = ( r 11 r 12 . . . r 1 n r 21 r 22 . . . r 2 n . . . . . . . . . r n 1 r n 2 . . . r n n ) ( 7.11 ) F=F(v_{1},...,v_{n})=\begin{pmatrix} r_{11} & r_{12} & ... & r_{1n}\\ r_{21} & r_{22} & ... & r_{2n}\\ ... & ... & ... & \\ r_{n1} & r_{n2} & ... & r_{nn} \end{pmatrix}\qquad (7.11) F=F(v1,...,vn)= r11r21...rn1r12r22...rn2............r1nr2nrnn (7.11)
F的体积由这个公式给出:
V o l ( F ( v 1 , . . . , v n ) ) = ∣ d e t ( F ( v 1 , . . . , v n ) ) ∣ Vol(\mathcal{F}(v_{1},...,v_{n}))=\mid det(F(v_{1},...,v_{n}))| Vol(F(v1,...,vn))=∣det(F(v1,...,vn))
证据。这个证明使用了多元微积分。我们可以计算出 F \mathcal{F} F的体积作为常数函数1在区域 F \mathcal{F} F上的积分,
V o l ( F ) = ∫ F d x 1 d x 2 . . . d x n Vol(\mathcal{F})=\int_{\mathcal{F}}^{} dx_{1}dx_{2}...dx_{n} Vol(F)=Fdx1dx2...dxn
基域F是(7.9)所描述的集合,因此我们根据以下公式将变量由x =(x1,…,xn)改为t =(t1,…,tn):
( x 1 , x 2 , . . . , x n ) = t 1 v 1 + t 2 v 2 + . . . + t n v n (x_{1},x_{2},...,x_{n})=t_{1}v_{1}+t_{2}v_{2}+...+t_{n}v_{n} (x1,x2,...,xn)=t1v1+t2v2+...+tnvn
根据 (7.11) 所定义的矩阵 F = F(v1,…,vn),变量变化由矩阵方程 x = tF 给出。此变量变化的雅各布矩阵为 F,而基域 F 是单位立方体 C n = [ 0 , 1 ] n C_{n}=[0,1]^{n} Cn=[0,1]n 在 F 下的映像,因此积分的变量变化公式为:
∫ F d x 1 d x 2 . . . d x n = ∫ F C n d x 1 d x 2 . . . d x n = ∫ C n ∣ d e t   F ∣ d t 1 d t 2 . . . d t n = ∣ d e t   F ∣ V o l ( C n ) = ∣ d e t   F ∣ \int_{\mathcal{F}}^{} dx_{1}dx_{2}...dx_{n}=\int_{\mathcal{FC_{n}}}^{} dx_{1}dx_{2}...dx_{n}=\int_{C_{n}}^{} |det\ F|dt_{1}dt_{2}...dt_{n}=|det\ F|Vol(C_{n})=|det\ F| Fdx1dx2...dxn=FCndx1dx2...dxn=Cndet Fdt1dt2...dtn=det FVol(Cn)=det F
例7.21。例7.15中的格有行列式:
d e t   L = ∣ d e t   A ∣ = ∣ d e t ( ( 2 1 3 1 2 0 2 − 3 − 5 ) ) ∣ = ∣ − 36 ∣ = 36 det\ L = |det\ A|=\left | det(\begin{pmatrix} 2 & 1 & 3\\ 1 & 2 & 0\\ 2 & -3 & -5 \end{pmatrix}) \right | =|-36|=36 det L=det A= det( 212123305 ) =36∣=36
推论 7.22. 设 L ⊂ R n L\subset R^{n} LRn 是维数为 n 的格,则 L 的每个基域都有相同的体积。因此,det(L) 是格 L 的不变式,与计算它所用的特定基域无关。

证明 设 v1,…, vn 和 w1,…, wn 是 L 的两个基域,设 F(v1,…, vn)and F(w1,…, wn) 是用向量的坐标作为矩阵的行得到的相关矩阵 (7.11)。那么命题 7.14 告诉我们
F ( v 1 , . . . , v n ) = A F ( w 1 , . . . , w n ) ( 7.12 ) F(v_{1},...,v_{n})=AF(w_{1},...,w_{n}) \qquad (7.12) F(v1,...,vn)=AF(w1,...,wn)(7.12)
对于一个n × n的整数矩阵det(A)=±1。现在将命题7.20号应用两次:
在这里插入图片描述

我的疑问

在介绍基础域时,对于二维空间的格L,设基为正交基(1,0)和(0,1),由这两个向量的线性组合对应的图不应该是虚线正方形吗?虚线是因为取不到1,为什么是平行四边形?

难道说,正如正方形是特殊的平行四边一样,正交基是特殊的基,对于其他的基(x,0),(0,y),这里可以用平行四边形来总结一般情况?

  • 29
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值