1. 使用 threading.Thread 类
方式一:直接传入目标函数
import threading
import time
def task(name, delay):
print(f"任务 {name} 开始")
time.sleep(delay)
print(f"任务 {name} 完成")
# 创建线程
thread1 = threading.Thread(target=task, args=("A", 2))
thread2 = threading.Thread(target=task, args=("B", 1))
# 启动线程
thread1.start()
thread2.start()
# 等待线程完成
thread1.join()
thread2.join()
print("所有任务完成")
方式二:继承 Thread 类并重写 run 方法
import threading
import time
class MyThread(threading.Thread):
def __init__(self, name, delay):
super().__init__()
self.name = name
self.delay = delay
def run(self):
print(f"任务 {self.name} 开始")
time.sleep(self.delay)
print(f"任务 {self.name} 完成")
# 创建并启动线程
thread1 = MyThread("A", 2)
thread2 = MyThread("B", 1)
thread1.start()
thread2.start()
thread1.join()
thread2.join()
print("所有任务完成")
2. 使用线程池 ThreadPoolExecutor
from concurrent.futures import ThreadPoolExecutor
import time
def task(name, delay):
print(f"任务 {name} 开始")
time.sleep(delay)
print(f"任务 {name} 完成")
return f"任务 {name} 结果"
# 使用线程池
with ThreadPoolExecutor(max_workers=3) as executor:
# 提交单个任务
future1 = executor.submit(task, "A", 2)
future2 = executor.submit(task, "B", 1)
# 获取结果
result1 = future1.result()
result2 = future2.result()
print(f"结果: {result1}, {result2}")
# 使用 map 方法批量提交任务
with ThreadPoolExecutor(max_workers=2) as executor:
results = executor.map(task, ["C", "D", "E"], [1, 2, 1])
for result in results:
print(f"收到结果: {result}")
3. 使用 threading.Timer 实现定时任务
import threading
import time
def delayed_task():
print("延迟任务执行了!")
# 创建定时器,5秒后执行
timer = threading.Timer(5.0, delayed_task)
timer.start()
print("定时器已启动,等待5秒...")
4. 使用队列 (queue.Queue) 配合工作线程
import threading
import queue
import time
def worker(q):
while True:
task = q.get()
if task is None: # 终止信号
break
print(f"处理任务: {task}")
time.sleep(1)
q.task_done()
# 创建任务队列
task_queue = queue.Queue()
# 创建工作线程
threads = []
for i in range(3):
t = threading.Thread(target=worker, args=(task_queue,))
t.start()
threads.append(t)
# 添加任务
for i in range(10):
task_queue.put(f"任务-{i}")
# 等待所有任务完成
task_queue.join()
# 停止工作线程
for i in range(3):
task_queue.put(None)
for t in threads:
t.join()
print("所有工作完成")
总结对比
| 方式 | 优点 | 缺点 | 适用场景 |
|---|---|---|---|
threading.Thread | 简单直接,控制灵活 | 需要手动管理线程生命周期 | 简单的多任务场景 |
继承 Thread 类 | 面向对象,可封装复杂逻辑 | 代码量稍多 | 需要复用线程逻辑的场景 |
ThreadPoolExecutor | 自动管理线程池,资源利用率高 | 配置相对复杂 | 大量短期任务的场景 |
threading.Timer | 简单实现定时任务 | 功能有限 | 延迟执行或定时任务 |
| 队列+工作线程 | 任务分发均衡,可控性强 | 实现相对复杂 | 生产者-消费者模式 |
推荐使用
- 简单任务:直接使用
threading.Thread - 大量短期任务:使用
ThreadPoolExecutor - 复杂任务逻辑:继承
Thread类 - 任务调度:使用队列配合工作线程模式
选择哪种方式取决于具体的应用场景和需求复杂度。
335

被折叠的 条评论
为什么被折叠?



