简单的博弈问题:牛羊吃草问题(递归解法-暴力解法)

本文介绍了牛羊吃草问题,这是一个博弈论问题,涉及正整数N份草,牛羊轮流按特定量吃草。双方都非常聪明,问题在于找出获胜策略。文章探讨了暴力求解和动态规划两种方法,通过遍历所有可能的吃草情况来确定胜负,并在动态规划中使用dp数组记录草量和胜败状态。还提示了一个可能的规律,鼓励读者在评论区交流背后的数学规律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个正整数N,表示N份青草放在一个仓库里面,有一只牛和一只羊,牛先吃,他俩轮流进行吃草,不管是牛还是羊,每一轮吃的草量,必须是
1,4,16,64.。。。
谁先把草吃完,谁获胜;
假设:牛和羊都是绝顶聪明,都想赢,都会做出合理的决定;

无论暴力求解还是递归求解的思想都是一致的,只不过一个从顶到下(递归),动态规划从下到顶(动态规划);

基本思想:遍历所有的取草的可能性,如果存在一种情况,无论后手怎么拿,获胜的都是先手,否则,获胜的是后手

博弈问题的核心:就是理解身份的转换;

暴力求解

private String eatGrass(int n) {
   
        // base
        if (n < 5) {
   
            return n == 1 || n == 3 || n == 4 ? "先手" : "后手";
        }
        int eat = 1;
        while (eat <= n) {
   
        	//在这个地方递归调用
            String who = eatGrass
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值