根据二叉搜索树的后续遍历arr,序列化成一个树,并且返回头结点
这道题的核心就是确定左右子树的边界,这是因为根节点很容易确定,最右侧的节点就是根节点;
如何确定左右子树的的边界呢?
根据搜索二叉树的性质久可以确定,左子树都比根节点要小,右子树都比根节点要打,
确定边界的的方式有两种:
1.从左到右线性遍历的方式,
2.使用二分查找的方式,这不是有序数组,为什么可以使用二分查找,二分查找的核心思想,每次排除一半的内容,但是对于存在两种明显边界的两类数据也可以寻找其边界;
第一种方式:
/**
* 反序列化二叉搜索书,线性搜索二叉树
*/
private Node postDeserialize(int[] arr, int L, int R) {
if (L > R) return null;
if (L == R) return new Node(arr[L]);
//创建根节点
Node root = new Node(arr[R]);
//这一部分也就是找到 左右子树的分界线
int mid = L - 1;
for (int i = L; i < R; i++) {
//是否小于根节点
if (arr[i] < arr[R]) {
mid = i;
}
}
root.left = postDeserialize(arr, L, mid);
root.right = postDeserialize(arr, mid + 1, R - 1);
return root;
}
第二种二分查找思想:
private Node postDeserializeOptimize(int[] arr, int L, int R) {
if (L > R) return null;
if (L == R) return new Node(arr[L]);
Node root = new Node(arr[R]);
//寻找左右子树的分界线
//寻找小于等于的arr[R]最左侧边界
int l = L, r = R; //区间左闭右开
while (l < r) {
int mid = (r - l) / 2;
if (arr[mid] < arr[R]) {
l = mid + 1;
} else {
r = mid;
}
}
//到这个地方就是 (L...l-1) 小于arr[R],在(l,R-1)大于或者等于arr[R]
root.left = postDeserializeOptimize(arr, L, l - 1);
root.right = postDeserializeOptimize(arr, l, R - 1);
return root;
}