搜索二叉树后序遍历反序列化(常规思路(O(N^2)),二分思路o(n*O(N*lgN)))

根据二叉搜索树的后续遍历arr,序列化成一个树,并且返回头结点

这道题的核心就是确定左右子树的边界,这是因为根节点很容易确定,最右侧的节点就是根节点;
如何确定左右子树的的边界呢?
根据搜索二叉树的性质久可以确定,左子树都比根节点要小,右子树都比根节点要打,
确定边界的的方式有两种:
1.从左到右线性遍历的方式
2.使用二分查找的方式,这不是有序数组,为什么可以使用二分查找,二分查找的核心思想,每次排除一半的内容,但是对于存在两种明显边界的两类数据也可以寻找其边界;

第一种方式:

 /**
     * 反序列化二叉搜索书,线性搜索二叉树
     */
    private Node postDeserialize(int[] arr, int L, int R) {
        if (L > R) return null;

        if (L == R) return new Node(arr[L]);

        //创建根节点
        Node root = new Node(arr[R]);

        //这一部分也就是找到 左右子树的分界线
        int mid = L - 1;
        for (int i = L; i < R; i++) {
            //是否小于根节点
            if (arr[i] < arr[R]) {
                mid = i;
            }
        }

        root.left = postDeserialize(arr, L, mid);
        root.right = postDeserialize(arr, mid + 1, R - 1);

        return root;
    }

第二种二分查找思想:

 private Node postDeserializeOptimize(int[] arr, int L, int R) {
        if (L > R) return null;

        if (L == R) return new Node(arr[L]);

        Node root = new Node(arr[R]);

        //寻找左右子树的分界线
        //寻找小于等于的arr[R]最左侧边界
        int l = L, r = R; //区间左闭右开
        while (l < r) {
            int mid = (r - l) / 2;

            if (arr[mid] < arr[R]) {
                l = mid + 1;
            } else {
                r = mid;
            }
        }

        //到这个地方就是 (L...l-1) 小于arr[R],在(l,R-1)大于或者等于arr[R]
        root.left = postDeserializeOptimize(arr, L, l - 1);
        root.right = postDeserializeOptimize(arr, l, R - 1);
        return root;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值