同余的基础性质

在开始之前,我们要先了解一些数论的基本符号

(a,b)表示a,b的最大公约数,[a,b]表示a,b的最小公倍数,b|a表示a%b=0。

在数论中我们定义同余:设m!=0,若m|a-b,则a-b=km。称m为模,a同余于b模m以及b是a模m的剩余。

记做a≡b(modm),也称作模m的同余式。

例如对于偶数我们总可以除尽2,那么用同余式就可写为a≡0(mod2),同理对于奇数我们可以写成a≡1(mod2)。

定理一:a同余b的充分必要条件是a和b能被m除后所得的最小非负数余数相等,即若

a=q1+r1且b=q2+r2 (0<=r1<m,0<=r2<m),则r1=r2。

同余的性质有:

性质一:同余是一种等价关系

a≡a(mod m)

a≡b(mod m)<=>b≡a(mod m)

a≡b(mod m),b≡c(mod m)=> a≡c(mod m)

性质二:同余式可以相加,即若有

a≡b(mod m),c≡d(mod m)

则(a+c)≡(d+b)(mod m)

性质三:同余式可以相乘,即若有

a≡b(mod m),c≡d(mod m)

则(ac)≡(db)(mod m)

性质四:设d>=1,d|m,若a ≡b(mod m),
则a≡b(mod d)
性质五:设d!=0,那么a≡b(mod m)等价于da≡db(mod |d|m)
性质六:ca ≡cb(mod m),等价于a≡b(mod m/(c,m))
特别的当c(m,c)=1时,ca≡cb(mod m)等价于a≡b(mod m)
在这里给出性质六的证明:

m|c(a-b),这等价于m/(c,m)|(a-b)c/(c,m)。

由(m/(c,m),c/(c,m))=1,可得m/(c,m)|a-b

性质六得证。

性质七:若m>=1,(a,m)=1,则存在c使ca≡1(mod m),我们把c称为a对m的逆,记做a^-1(mod m)或a^-1。

性质八:同余式组

a≡b(mod mj) (j=1,2,3......)

同时成立的充要条件是 a≡b(mod [m1,m2,m3......])。



  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值