题目描述
美团在吃喝玩乐等很多方面都给大家提供了便利。最近又增加了一项新业务:小象生鲜。这是新零售超市,你既可以在线下超市门店选购生鲜食品,也可以在手机App上下单,最快30分钟就配送到家。
新店开张免不了大优惠。我们要在小象生鲜超市里采购n个物品,每个物品价格为ai,有一些物品可以选择八折优惠(称为特价优惠)。
有m种满减优惠方式,满减优惠方式只有在所有物品都不选择特价优惠时才能使用,且最多只可以选择最多一款。
每种满减优惠描述为(b i,c i),即满b i减c i(当消费>=b i时优惠c i)。
求要买齐这n个物品(必须一单买齐),至少需要多少钱(保留两位小数)。
新店开张免不了大优惠。我们要在小象生鲜超市里采购n个物品,每个物品价格为ai,有一些物品可以选择八折优惠(称为特价优惠)。
有m种满减优惠方式,满减优惠方式只有在所有物品都不选择特价优惠时才能使用,且最多只可以选择最多一款。
每种满减优惠描述为(b i,c i),即满b i减c i(当消费>=b i时优惠c i)。
求要买齐这n个物品(必须一单买齐),至少需要多少钱(保留两位小数)。
输入描述:
第一行,两个整数n,m。 接下来n行,每行一个正整数ai,以及一个0/1表示是否可以选择特价优惠(1表示可以)。
接下来m行,每行两个正整数b
i,c
i,描述一款满减优惠。
1 <= n,m <=10
1 <= a
i <= 1001 <= c
i < b
i <= 1000
输出描述:
一行一个实数,表示至少需要消耗的钱数(保留恰好两位小数)。
题解:枚举下就行。
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long double ll;
ll a[10005],b[10005];
int main()
{
int n,m;
cin>>n>>m;
double ans=0;
double sum=0;
for(int i=0;i<n;i++)
{
cin>>a[i];
int x;cin>>x;
if(x==1) ans+=a[i]*0.8;
else ans+=a[i];
sum+=a[i];
}
for(int i=0;i<m;i++)
{
double q,w;cin>>q>>w;
if(sum>=q) ans=min(ans,sum-w);
}
printf("%.2lf\n",ans);
return 0;
}
链接:
https://www.nowcoder.com/acm/contest/138/B
来源:牛客网
题目描述
小美和小团最近沉迷可乐。可供TA们选择的可乐共有k种,比如可口可乐、零度可乐等等,每种可乐会带给小美和小团不同的快乐程度。
TA们一共要买n瓶可乐,每种可乐可以买无限多瓶,小美会随机挑选其中的m瓶喝,剩下的n-m瓶小团喝。
请问应该如何购买可乐,使得小美和小团得到的快乐程度的和的期望值最大?
现在请求出购买可乐的方案。
TA们一共要买n瓶可乐,每种可乐可以买无限多瓶,小美会随机挑选其中的m瓶喝,剩下的n-m瓶小团喝。
请问应该如何购买可乐,使得小美和小团得到的快乐程度的和的期望值最大?
现在请求出购买可乐的方案。
输入描述:
第一行三个整数n,m,k分别表示要买的可乐数、小美喝的可乐数以及可供选择的可乐种数。 接下来k行,每行两个整数a,b分别表示某种可乐分别给予小美和小团的快乐程度。 对于所有数据,1 <= n <= 10,000, 0 <= m <= n, 1 <= k <= 10,000, -10,000 <= a, b <= 10,000
输出描述:
一行k个整数,第i个整数表示购买第i种可乐的数目。 如果有多解,请输出字典序最小的那个。 对于两个序列 a1, a2, ..., ak, b1, b2, ..., bk,a的字典序小于b,当且仅当存在一个位置i <= k满足: ai < bi且对于所有的位置 j < i,aj = bj;
题解;主要是理解期望值是啥,假设某种可乐买了p瓶,那么他对答案的贡献就是p*(m/n*a+(n-m)/n*b),我们可以发现p后面的是定值,我们只需要最大的(m/n*a+(n-m)/n*b),然后全买它就行了。注意如果存在多个(m/n*a+(n-m)/n*b)相等,则选后面的(保证字典序最小),注意答案可能是负数。我的代码中用了long double因为没考虑负数一直卡在90%,以为爆了double,事后发现根本不可能。
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long double ll;
ll a[10005],b[10005];
int main()
{
int n,m,k;
cin>>n>>m>>k;
for(int i=0;i<k;i++)
{
cin>>a[i]>>b[i];
}
ll ans=-10000000000;int flag=0;
for(int i=0;i<k;i++)
{
if(ans<=((ll)m/(ll)n*a[i])+(((ll)n-(ll)m)/(ll)n*b[i]))
{
ans=((ll)m/(ll)n*a[i])+(((ll)n-(ll)m)/(ll)n*b[i]);
flag=i;
}
}
for(int i=0;i<k;i++)
{
if(i==flag) cout<<n;
else cout<<0;
if(i==k-1) cout<<endl;
else cout<<" ";
}
return 0;
}